Идентификация микроорганизмов по антигенной структуре. Лекция: Антигены

Выделение микроорганизмов из различных материалов и получение их культур широко используется в лабораторной практике для микробиологической диагностики инфекционных заболеваний, в научно-исследовательской работе и в микробиологическом производстве вакцин, антибиотиков и других биологически активных продуктов микробной жизнедеятельности.

Условия культивирования также зависят от свойств соответствующих микроорганизмов. Большинство патогенных микробов выращивают на питательных средах при температуре 37°С в течение 12 сут. Однако некоторые из них нуждаются в более длительных сроках. Например, бактерии коклюша- в 2-3 сутках, а микобактерии туберкулеза - в 3-4 неделях.

Для стимуляции процессов роста и размножения аэробных микробов, а также сокращения сроков их выращивания используют метод глубинного культивирования, который заключается в непрерывном аэрировании и перемешивании питательной среды. Глубинный метод нашел широкое применение в биотехнологии.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его инертными газами в герметизированных термостатах - анаэростатах. Анаэробов выращивают на питательных средах, содержащих редуцирующие вещества (глюкозу, муравьинокислый натрий и др.), уменьшающие окислительно-восстановительные потенциал.

В диагностической практике особое значение имеют чистые культуры бактерий, которые выделяются из исследуемого материала, взятого у больного или объектов окружающей среды. С этой целью используют искусственные питательные среды, которые подразделяют на основные, дифференциально-диагностические и элективные самого разнообразного состава. Выбор питательной среды для выделения чистой культуры имеет существенное значение при бактериологической диагностике.

В большинстве случаев используют твердые питательные среды, предварительно разлитые в чашки Петри. На поверхность среды петлей помещают исследуемый материал и растирают шпателем, чтобы получить изолированные колонии, выросшие из одной клетки. Пересев изолированной колонии на скошенную агаровую среду в пробирку приводит к получению чистой культуры.

Для идентификации, т.е. определения родовой и видовой принадлежности выделенной культуры, чаще всего изучают фенотипические признаки:

а) морфологию бактериальных клеток в окрашенных мазках, либо нативных препаратах;

б) биохимические признаки культуры по ее способности ферментировать углеводы (глюкоза, лактоза, сахароза, мальтоза, маннит и др.), образовывать индол, аммиак и сероводород, являющиеся продуктами протеолитической активности бактерий.

Для более полного анализа применяют газово-жидкостную хромографию и другие методы.

Наряду с бактериологическими методами для идентификации чистых культур широко используют иммунологические методы исследования, которые направлены на изучение антигенной структуры выделенной культуры. С этой целью используют серологические реакции: агглютанации, преципитации иммунофлюоресценции, связывания комплемента, иммуноферментный, радиоиммунный методы и др.

      Методы выделения чистой культуры

Для того, чтобы выделить чистую культуру микроорганизмов, следует отделить многочисленные бактерии, которые находятся в материале, одна от другой. Это можно достичь с помощью методов, которые основаны на двух принципах – механическом и биологическом разобщении бактерий.

Методы выделения чистых культур, основанные на механическом принципе

Метод последовательных разведений , предложен Л. Пастером, был одним из самых первых, который применялся для механического разъединения микроорганизмов. Он заключается в проведении последовательных серийных разведений материала, который содержит микробов, в стерильной жидкой питательной среде. Этот прием достаточно кропотлив и несовершенный в работе, поскольку не позволяет контролировать количество микробных клеток, которые попадают в пробирки при разведениях.

Этого недостатка не имеет метод Коха (метод пластинчатых разведений ). Р. Кох использовал плотные питательные среды на основе желатина или агар-агара. Материал с ассоциациями разных видов бактерий разводился в нескольких пробирках с растопленным и немного охлажденным желатином, содержание которого позже выливалось на стерильные стеклянные пластины. После застудневания среды оно культивировалось при оптимальной температуре. В его толще образовывались изолированные колонии микроорганизмов, которые легко могут быть перенесены на свежую питательную среду с помощью платиновой петли для получения чистой культуры бактерий.

Метод Дригальского является более совершенным методом, который широко распространен в повседневной микробиологической практике. Сначала на поверхность среды в чашке Петри пипеткой или петлей наносят исследуемый материал. С помощью металлического или стеклянного шпателя его тщательным образом втирают в среду. Чашку во время посева держат открытой и осторожно вращают, чтобы равномерно распределить материал. Не стерилизуя шпателя, проводят им занял материалу в другой чашке Петри, при потребности – в третьей. Только после этого шпатель окунают в дезинфицирующий раствор или прожаривают в пламени горелки. На поверхности среды в первой чашке наблюдаем, как правило, сплошной рост бактерий, во второй – густой рост, а в третьей – рост в виде изолированных колоний.

Колонии по методу Дригальского

Метод штриховых посевов сегодня используется в микробиологических лабораториях чаще всего. Материал, который содержит микроорганизмы, набирают бактериологической петлей и наносят на поверхность питательной среды возле края чашки. Снимают избыток материала и проводят занял его параллельными штрихами от края к краю чашки. Спустя сутки инкубации посевов при оптимальной температуре на поверхности чашки вырастают изолированные колонии микробов.

Метод штрихов

Для получения изолированных колоний можно использовать занял тампоном, которым проводили забор исследуемого материала. Несколько преоткрывают чашку Петри с питательной средой, вносят туда тампон и осторожными движениями втирают материал в поверхность чашки, возвращая постепенно тампон и чашку.

Таким образом, существенное преимущество методов пластинчатых разведений Коха, Дригальского и штриховых посевов заключается в том, что они создают изолированные колонии микроорганизмов, которые при инокуляции на другую питательную среду превращаются в чистую культуру

Методы выделения чистых культур, основанные на биологическом принципе

Биологический принцип разъединения бактерий предусматривает целеустремленный поиск методов, которые учитывают многочисленные особенности микробных клеток. Среди самых распространенных методов можно выделить следующие:

1. По типу дыхания. Все микроорганизмы по типу дыхания разделяются на две основных группы: аэробные (Corynebacterium diphtheriae , Vibrio сholerae и тому подобное) и анаэробные (Clostridium tetani , Clostridium botulinum , Clostridium perfringens и др.) . Если материал, из которого следует выделить анаэробные возбудители, предварительно прогреть, а затем культивировать в анаэробных условиях, то вырастут именно эти бактерии.

2. По спорообразованию . Известно, что некоторые микробы (бациллы и клостридии) способны к споротворення. Среди них Clostridium tetani , Clostridium botulinum , Clostridium perfringens , Bacillus subtilis , Bacillus cereus . Споры стойкие к действию факторов внешней среды. Следовательно, исследуемый материал может быть подданный действию термического фактора, а затем инокулятивно перенесен в питательную среду. Спустя некоторое время на нем вырастут именно те бактерии, которые способны к споротворению.

3. Стойкость микробов к действию кислот и щелочей. Некоторые микробы (Mycobacterium tuberculosis , Mycobacterium bovis ) в результате особенностей их химического строения стойки к действию кислот. Вот почему материал, который их содержит, например, мокрота при туберкулезе предварительно обрабатывают равным объемом 10 % раствора серной кислоты, а затем высевают на питательные среды. Посторонняя флора погибает, а микобактерии в результате их резистентности к кислотам, вырастают.

Холерный вибрион (Vibrio сholerae ) , напротив, является галофильной бактерией, потому для создания оптимальных условий роста его высевают на среды, которые содержат щелочь (1 % щелочная пептонная вода). Уже через 4-6 часов на поверхности среды появляются характерные признаки роста в виде нежной голубоватой пленки.

4. Подвижность бактерий. Некоторые микробы (Proteus vulgaris ) имеют тенденцию к ползучему росту и способны быстро распространяться по поверхности кое-что влажной среды. Для выделения таких возбудителей их засевают в капельку конденсационной жидкости, которая образуется при охлаждении столбика скошенного агара. Через 16-18 год они распространяются на всю поверхность среды. Если взять материал из верхней части агара, будем иметь чистую культуру возбудителей.

5. Чувствительность микробов к действию химических веществ, антибиотиков и других противомикробных средств. В результате особенностей метаболизма бактерий они могут иметь разную чувствительность к некоторым химическим факторам. Известно, что стафилококки, аэробные бациллы, которые образуют споры, стойкие к действию 7,5–10 % хлорида натрия. Вот почему для выделения этих возбудителей используют элективные питательные среды (желточно-солевой агар, манит-солевой агар), которые содержат именно это вещество. Другие бактерии при такой концентрации хлорида натрия практически не растут.

6. Введение некоторых антибиотиков (нистатин) используется для торможения роста грибов в материале, который сильно контаминированный ими. И, напротив, добавление антибиотика пеницилина к среде способствует росту бактериальной флоры, если нужно выделить грибы. Добавление фуразолидона в определенных концентрациях к питательной среде создает селективные условия для роста коринебактерий и микрококков.

7. Способность микроорганизмов проникать через неповрежденные кожные покровы. Некоторые патогенные бактерии (Yersinia pestis ) в результате наличия большого количества ферментов агрессии способны проникать через неповрежденную кожу. Для этого шерсть на теле лабораторного животного бреют и в этот участок втирают исследуемый материал, который содержит возбудителя и большое количество сторонней микрофлоры. Через некоторое время животное забивают, а из крови или внутренних органов выделяют микробов.

8. Чувствительность лабораторных животных к возбудителям инфекционных заболеваний. Отдельные животные проявляют высокую чувствительность к разным микроорганизмам.

Например, при любом способе введения Streptococcus pneumoniae белым мышам у них развивается генерализованная пневмококковая инфекция. Аналогичная картина наблюдается при заражении гвинейских свинок возбудителями туберкулеза (Mycobacterium tuberculosis ) .

В повседневной практике бактериологи пользуются такими понятиями как штамм и чистая культура микроорганизмов. Под штаммом понимают микробов одного вида, которые выделены из разных источников, или из одного и того же источника, но в разное время. Чистая культура бактерий – это микроорганизмы одного вида, потомки одной микробной клетки, которые выросли на (в) питательной среде.

Выделение чистой культуры аеробних микроорганизмов состоит из ряда этапов.

В первый день (1 этап исследования) в стерильную посуду (пробирка, колба, флакон) забирают патологический материал. Его изучают - внешний вид, консистенция, цвет, запах и другие признаки, готовят мазок, красят и исследуют под микроскопом. В некоторых случаях (острая гонорея, чума) на этом этапе можно поставить предварительный диагноз, а кроме того, подобрать среды, на которые будет засеваться материал. Затем проводят бактериологической петлей (применяется чаще всего), с помощью шпателя - методом Дригальского, ватно-марлевым тампоном. Чашки закрывают, переворачивают вверх дном, подписывают специальным карандашом и ставят в термостат при оптимальной температуре (37 °С) на 18-48 часов. Цель этапа – получить изолированные колонии микроорганизмов.

Однако, порой с целью нагромождения материала его засевают на жидкие питательные среды.

На второй день (2 этап исследования) на поверхности плотной питательной среды микроорганизмы образуют сплошной, густой рост или изолированные колонии. Колония – это видимые невооруженным глазом скопления бактерий на поверхности или в толще питательной среды. Как правило, каждая колония формируется из потомков одной микробной клетки (клоны), потому их состав достаточно однороден. Особенности роста бактерий на питательных средах являются проявлением их культуральных свойств.

Чашки тщательным образом рассматривают и изучают изолированные колонии, которые выросли на поверхности агара. Обращают внимание на величину, форму, цвет, характер краев и поверхности колоний, их консистенцию и другие признаки. Если требуется, исследуют колонии под лупой, малым или большим увеличением микроскопа. Структуру колоний исследуют в проходном свете при малом увеличении микроскопа. Они могут быть гиалиновые, зернистые, нитевидные или волокнистые, которые характеризуются наличием переплетенных нитей в толще колоний.

Характеристика колоний – важна составная часть работы бактериолога и лаборанта, ведь микроорганизмам каждого вида присущи свои особенные колонии.

На третий день (3 этап исследования) изучают характер роста чистой культуры микроорганизмов и проводят ее идентификацию.

Сначала обращают внимание на особенности роста микроорганизмов на среде и делают мазок, крася его методом Грама, с целью проверки культуры на чистоту. Если под микроскопом наблюдают бактерии однотипной морфологии, размером и тинкториальных (способность краситься) свойств, делают вывод, что культура чиста. В некоторых случаях уже по внешнему виду и особенностям их роста можно сделать вывод о виде выделенных возбудителей. Определение вида бактерий по их морфологическим признакам называется морфологической идентификацией. Определения вида возбудителей по их культуральным признакам называют культуральной идентификацией.

Однако этих исследований недостаточно, чтобы сделать окончательный вывод о виде выделенных микробов. Потому изучают биохимические свойства бактерий. Они достаточно разнообразны.

      Идентификация бактерий.

Определение вида возбудителя по его биохимическим свойствам называется биохимической идентификацией .

С целью установления видовой принадлежности бактерий часто изучают их антигенное строение, то есть проводят идентификацию по антигенным свойствам. Каждый микроорганизм имеет в своем составе разные антигенные субстанции. В частности, представители семьи энтеробактерий (ешерихии, сальмонели, шигелы) содержат оболочковый О-антиген, жгутиковий Н-антиген и капсульный К-антиген. Они неоднородны своим химическим составом, потому существуют во многих вариантах. Их можно определить с помощью специфических аглютинуючих сывороток. Такое определение вида бактерий носит название серологической идентификации .

Иногда идентификацию бактерий проводят, заражая лабораторных животных чистой культурой и наблюдая за теми изменениями, которые вызывают возбудители в организме (туберкулез, ботулизм, столбняк, сальмонеллез и тому подобное). Такой метод называют идентификацией по биологическими свойствам . Как объекты – чаще всего используют гвинейских свинок, белых мышей и крыс.

ПРИЛОЖЕНИЯ

(таблицы и схемы)

Физиология бактерий

Схема 1. Физиология бактерий.

размножение

выращивание на питательных средах

Таблица 1. Общая таблица физиологии бактерий.

Характеристика

Процесс приобретения энергии и веществ.

Совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности микробных клеток.

Координированное воспроизведение всех клеточных компонентов и структур, ведущее в конечном итоге к увеличению массы клетки

Размножение

Увеличение числа клеток в популяции

Выращивание на питательных средах.

В лабораторных условиях микроорганизмы выращивают на питательных средах, которые должны быть стерильными, прозрачными, влажными, содержать определенные питательные вещества (белки, углеводы, витамины, микроэлементы и др.), обладать определенной буферностью, иметь соответствующий рН, окислительно-восстановительный потенциал.

Таблица 1.1 Химический состав и физиологические функции элементов.

Элемент состава

Характеристика и роль в физиологии клетки.

Основной компонент бактериальной клетки, составляющий около 80 % ее массы. Она находится в свободном или связанном состоянии со структурными элементами клетки. В спорах количество воды уменьшается до 18.20 %. Вода является растворителем для многих веществ, а также выполняет механическую роль в обеспечении тургора. При плазмолизе – потере клеткой воды в гипертоническом растворе – происходит отслоение протоплазмы от клеточной оболочки. Удаление воды из клетки, высушивание приостанавливают процессы метаболизма. Большинство микроорганизмов хорошо переносят высушивание. При недостатке воды микроорганизмы не размножаются. Высушивание в вакууме из замороженного состояния (лиофилизация) прекращает размножение и способствует длительному сохранению микробных особей.

40 – 80 % сухой массы. Определяют важнейшие биологические свойства бактерий и состоят обычно из сочетаний 20 аминокислот. В состав бактерий входит диаминопимелиновая кислота (ДАП), отсутствующая в клетках человека и животных. Бактерии содержат более 2000 различных белков, находящихся в структурных компонентах и участвующих в процессах метаболизма. Большая часть белков обладает ферментативной активностью. Белки бактериальной клетки обусловливают антигенность и иммуногенность, вирулентность, видовую принадлежность бактерий.

Элемент состава

Характеристика и роль в физиологии клетки.

Нуклеиновые кислоты

Выполняют функции, аналогичные нуклеиновым кислотам эукариотических клеток: молекула ДНК в виде хромосомы отвечает за наследственность, рибонуклеиновые кислоты (информационная, или матричная, транспортная и рибосомная) участвуют в биосинтезе белка.

Углеводы

Представлены простыми веществами (моно- и дисахариды) и комплексными соединениями. Полисахариды часто входят в состав капсул. Некоторые внутриклеточные полисахариды (крахмал, гликоген и др.) являются запасными питательными веществами.

Входят в состав цитоплазматической мембраны и ее производных, а также клеточной стенки бактерий, например наружной мембраны, где, кроме биомолекулярного слоя липидов, имеется ЛПС. Липиды могут выполнять в цитоплазме роль запасных питательных веществ. Липиды бактерий представлены фосфолипидами, жирными кислотами и глицеридами. Наибольшее количество липидов (до 40 %) содержат микобактерии туберкулеза.

Минеральные вещества

Обнаруживают в золе после сжигания клеток. В большом количестве выявляются фосфор, калий, натрий, сера, железо, кальций, магний, а также микроэлементы (цинк, медь, кобальт, барий, марганец и др.).Они участвуют в регуляции осмотического давления, рН среды, окислительно-восстановительного потенциала, активируют ферменты, входят в состав ферментов, витаминов и структурных компонентов микробной клетки.

Таблица 1.2. Азотистые основания.

Таблица 1.2.1 Ферменты

Характеристика

Определение

Специфичные и эффективные белковые катализаторы, присутствующие во всех живых клетках.

Ферменты снижают энергию активации, обеспечивая протекание таких химических реакций, которые без них могли бы проходить только при высокой температуре, избыточном давлении и при других нефизиологических условиях, неприемлемых для живой клетки.

Ферменты увеличивают скорость реакции примерно на 10 порядков, что сокращает полупериод какой-либо реакции с 300 лет до одной секунды.

Ферменты «узнают» субстрат по пространственному расположению его молекулы и распределению зарядов в ней. За связывание с субстратом отвечает определённый участок молекулы ферментативного белка - его каталитический центр. При этом образуется промежуточный фермент-субстратный комплекс, который затем распадается с образованием продукта реакции и свободного фермента.

Разновидности

Регуляторные (аллостерические) ферменты воспринимают различные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность.

Эффекторные ферменты - ферменты катализирующие некоторые реакции (подробнее табл. 1.2.2.)

Функциональная активность

Функциональная активность ферментов и скорость ферментативных реакций зависят от условий, в которых находится данный микроорганизм и прежде всего от температуры среды и ее pH. Для многих патогенных микроорганизмов оптимальными являются температура 37°С и pH 7,2-7,4.

КЛАССЫ ФЕРМЕНТОВ:

    микроорганизмы синтезируют различные ферменты, принадлежащие ко всем шести известным классам.

Таблица 1.2.2. Классы эффекторных ферментов

Класс фермента

Катализирует:

Оксидоредуктазы

Перенос электронов

Трансферазы

Перенос различных химических групп

Гидролазы

Перенос функциональных групп на молекулу воды

Присоединение групп по двойным связям и обратные реакции

Изомеразы

Перенос групп внутри молекулы с образованием изомерных форм

Образование связей С-С, C-S, С-О, C-N за счёт реакций конденсации, сопряжённых с распадом аденозинтрифосфата (АТФ)

Таблица 1.2.3. Типы ферментов по образованию в бактериальной клетке

Характеристика

Примечания

Иидуцибельные (адаптивные)

ферменты

«индукция субстратом»

    Ферменты, концентрация которых в клетке резко возрастает в ответ на появление в среде субстрата-индуктора.

    Синтезируются бактериальной клеткой только при наличии в среде субстрата данного фермента

Репрессибельные ферменты

Синтез этих ферментов подавляется в результате избыточного накопления продукта реакции, катализируемой данным ферментом.

Примером репрессии ферментов может служить синтез триптофана, который образуется из антраниловой кислоты с участием антранилатсинтетазы.

Конститутивные ферменты

Ферменты, синтезируемые вне зависимости от условий среды

Ферменты гликолиза

Мультиферментные комплексы

Внутриклеточные ферменты, объединенные структурно и функционально

Ферменты дыхательной цепи, локализованные на цитоплазматической мембране.

Таблица 1.2.4. Специфические ферменты

Ферменты

Идентификация бактерий

Супероксид дисмутаза и каталаза

Все аэробы или факультативные анаэробы обладают супероксид дисмутазой и каталазой - ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий - молочнокислые бактерии каталазонегативны.

Пероксидаза

Молочнокислые бактерии аккумулируют пероксидазу - фермент, катализирующий окисление органических соединений под действием Н202 (восстанавливается до воды).

Аргининдигидролаза

Диагностический признак, позволяющий различить сапрофитические виды Pseudomonas от фитопатогенных.

Среди пяти основных групп семейства Enterobacteriaceae только две - Escherichiae и Erwiniae- не синтезируют уреазу.

Таблица 1.2.5. Применение ферментов бактерий в промышленной микробиологии.

Ферменты

Применение

Амилаза, целлюлаза, протеаза, липаза

Для улучшения пищеварения применяют готовые препараты ферментов, облегчающих соответственно гидролиз крахмала, целлюлозы, белка и липидов

Инвертаза дрожжей

При изготовлении сладостей для предупреждения кристаллизации сахарозы

Пектиназа

Используют для осветления фруктовых соков

Коллагеназа клостридий и стрептокиназа стрептококков

Гидролизуют белки, способствуют заживлению ран и ожогов

Литические ферменты бактерий

Секретируются в окружающую среду, действуют на клеточные стенки патогенных микроорганизмов и служат эффективным средством в борьбе с последними, даже если они обладают множественной устойчивостью к антибиотикам

Рибонуклеазы, дезоксирибонуклеазы, полимеразы, ДНК-лигазы и прочие ферменты, направленно модифицирующие нуклеиновые кислоты

Используют в качестве инструментария в биоорганической химии, генной инженерии и генотерапии

Таблица 1.2.6. Классификация ферментов по локализации.

Локализация

Эндоферменты

    В цитоплазме

    В цитоплазматической мембране

    В периплазматическом пространстве

Функционируют только внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена.

Экзоферменты

Выделяются в окружающую среду.

Выделяются клеткой в среду и катализируют реакции гидролиза сложных органических соединений на более простые, доступные для ассимиляции микробной клеткой. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.

Таблица 1.2.7. Ферменты патогенных микробов (ферменты агрессии)

Ферменты

Лецитовителлаза

Лецитиназа

Разрушает клеточные мембраны

    Посев исследуемого материала на питательную среду ЖСА

    Результат: зона помутнения вокруг колоний на ЖСА.

Гемолизин

Разрушает эритроциты

    Посев исследуемого материала на питательную среду кровяной агар.

    Результат: полная зона гемолиза вокруг колоний на кровяном агаре.

Коагулаза-положительные культуры

Вызывает свертывание плазмы крови

    Посев исследуемого материала на стерильную цитратную плазму крови.

    Результат: свёртывание плазмы

Коагулаза-отрицательные культуры

Выработка маннита

    Посев на питательную среду маннит в анаэробных условиях.

    Результат: Появление окрашенных колоний (в цвет индикатора)

Ферменты

Образование некоторых ферментов в лабораторных условиях

Гиалуронидаза

Гидролизирует гиалуроновую ки­слоту - основной компонент соединительной ткани

    Посев исследуемого материала на питательную среду, содержащую гиалуроновую кислоту.

    Результат: в пробирках, где содержится гиалуронидаза, не происходит образования сгустка.

Нейраминидаза

Отщепляет от различных гликопротеидов, гликолипидов, полисахаридов сиаловую (нейраминовую) ки­слоту, повышая проницаемость различных тканей.

Выявление: реакция определения антител к нейраминидазе (РИНА) и другие (иммунодиффузные, иммуноэнзимные и радиоиммунные методы).

Таблица 1.2.8. Классификация ферментов по биохимическим свойствам.

Ферменты

Обнаружение

Сахаролитические

Расщепление сахаров

Дифференциально - диагностические среды такие, как среды Гисса, среда Олькеницкого, среда Эндо, среда Левина, среда Плоскирева.

Протеолитические

Расщепление белков

Микробы засевают уколом в столбик желатина и после 3-5 суток инкубирования при комнатной температуре отмечают характер разжижения желатина. Протеолитическую активность определяют также по образованию продуктов разложения белка: индола, сероводорода, аммиака. Для их определения микроорганизмы засевают в мясо-пептонный бульон.

Ферменты, выявляемые по конечным продуктам

    Образование щелочей

    Образование кислот

    Образование сероводорода

    Образование аммиака и др.

Для отличия одних видов бактерий от других на основании их ферментативной активности применяются дифференциально-диагностические среды

Схема 1.2.8. Ферментный состав.

ФЕРМЕНТНЫЙ СОСТАВ ЛЮБОГО МИКРООРГАНИЗМА:

Определяется его геномом

Является стабильным признаком

Широко применяется для их идентификации

Определение сахаролитических, протеолитических и других свойств.

Таблица 1.3. Пигменты

Пигменты

Синтез микроорганизмом

Жирорастворимые каротиноидные пигменты красного, оранжевого или желтого цветов

Образуют сарцины, микобактерии туберкулеза, некоторые актиномицеты. Эти пигменты предохраняют их от действия УФ-лучей.

Пигменты черного или коричневого цвета - меланины

Синтезируются облигатными анаэробами Bacteroides niger и др. не растворимы в воде и даже сильных кислотах

Пирроловый пигмент ярко-красного цвета, – продигиозин

Образуется некоторыми серациями

Водорастворимый фенозиновый пигмент, – пиоцианин.

Продуцируются синегнойными бактериями

(Pseudomonas aeruginosa). При этом питательная среда с нейтральным или щелочным pH окрашивается в сине-зеленый цвет.

Таблица 1.4. Светящиеся и ароматообразующие микроорганизмы

Условие и характеристика

Свечение (люминесценция)

Бактерии вызывают свечение тех субстратов, например чешуи рыб, высших грибов, гниющих деревьев, пищевых продуктов, на поверхности которых размножаются. Большинство светящихся бактерий относятся к галофильным видам, способным размножаться при повышенных концентрациях солей. Они обитают в морях и океанах и редко - в пресных водоемах. Все светящиеся бактерии являются аэробами. Механизм свечения связан с освобождением энергии в процессе биологического окисления субстрата.

Ароматообразование

Некоторые микроорганизмы вырабатывают летучие ароматические вещества, например уксусно-этиловый и уксусно-амиловый эфиры, которые придают аромат вину, пиву, молочнокислым и другим пищевым продуктам, вследствие чего применяются в их производстве.

Таблица 2.1.1.Метаболизм

Определение

Метаболизм

Биохимические процессы, протекающие в клетке, объединены одним словом - ме­таболизм (греч. metabole - превращение). Этот термин равнозначен понятию «обмен веществ и энергии». Различают две стороны метаболизма: анаболизм и катаболизм.

    Анаболизм - совокупность биохимических реакций, осуществляющих синтез компонентов клетки, т. е. та сторона обмена веществ, которую называют конструктивным обменом.

    Катаболизм - совокупность реакций, обеспечивающих клетку энергией, необ­ходимой, в частности, и для реакций конструктивного обмена. Поэтому катаболизм определяют еще как энергетический обмен клетки.

Амфиболизм

Промежуточный обмен веществ, превращающий низкомолекулярные фрагменты питательных веществ в ряд органических кислот и фосфорных эфиров, называют

Схема 2.1.1. Метаболизм

МЕТАБОЛИЗМ –

совокупность двух противоположных, но взаимодействующих процессов: катаболизма и анаболизма

Анаболизм = ассимиляция = пластический метаболизм = конструктивный метаболизм

Катаболизм = диссимиляция = энергетический метаболизм = распад = обеспечение клетки энергией

Синтез (компонентов клетки)

Ферментативные катаболические реакции, в результате которых происходит выделение энергии , которая аккумулировалась в молекулах АТФ.

Биосинтез мономеров:

аминокислот нуклеотидов моносахаридов жирных кислот

Биосинтез полимеров:

белков нуклеиновых кислот полисахаридов липидов

В результате ферментативных анаболических реакция, энергия, выделенная в процессе катаболизма расходуется на синтез макромолекул органических соединений, из которых потом монтируются биополимеры – составные части микробной клетки.

Энергия расходуется на синтез компонентов клетки

Таблица 2.1.3. Обмен веществ и превращение энергии клетки.

Обмен веществ

Характеристика

Примечания

Обмен веществ обеспечивает присущее живому организму как системе динамическое равновесие, при котором взаимно уравновешиваются синтез и разрушение, размножение и гибель.

Обмен веществ - главный признак жизни

Пластический обмен

Синтез белков, жиров, углеводов.

Это совокупность реакций биологического синтеза.

Из веществ поступающих в клетку извне, образуются молекулы, подобные соединениям клетки, то есть происходит ассимиляция.

Энергетический обмен

Процесс противоположный синтезу. Это совокупность реакций расщепления.

При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакции биосинтеза, то есть происходит диссимиляция.

    При расщеплении глюкозы энергия выделяется поэтапно при участии ряда ферментов.

Таблица 2.1.2. Различие в метаболизме для идентификации.

Таблица 2.2 Анаболизм (конструктивный метаболизм)

Схема 2.2.2. Биосинтез аминокислот у прокариот.

Схема 2.2.1. Биосинтез углеводов у микроорганизмов.

Рисунок 2.2.3. Биосинтез липидов

Таблица 2.2.4. Этапы энергетического обмена – Катаболизм.

Этапы

Характеристика

Примечание

Подготовительный

Молекулы дисахаридов и полисахаридов, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты. Крупные молекулы нуклеиновых кислот на нуклеотиды.

На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Бескислородный или неполный или анаэробный или брожение или диссимиляция.

Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.

Например: глюкоза распадается на две молекулы молочной кислоты и две молекулы АТФ.

В реакциях расщепления глюкозы участвует АТФ и H 3 PO 4 . В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40 % энергии, остальная рассеивается в виде теплоты.

Во всех случаях распада одной молекулы глюкозы образовывается две молекулы АТФ.

Стадия аэробного дыхания или кислородного расщепления.

При доступе кислорода к клетке образовавшиеся во время предыдущего этапа вещества окисляются (расщепляются) до конечных продуктов CO 2 и H 2 O .

Суммарное уравнение аэробного дыхания:

Схема 2.2.4. Брожение.

Бродильный метаболизм – характеризуется образованием АТФ посредством фосфорилирования субстратов.

    Первая (окисление) = расщепление

    Вторая (восстановление)

Включает превращения глюкозы в пировиноградную кислоту.

Включает утилизацию водорода для восстановления пировиноградной кислоты.

Пути образования пировиноградной кислоты из углеводов

Схема 2.2.5. Пировиноградная кислота.

Гликолитический путь (путь Эмбдена-Мейергофа-Парнаса)

Путь Энтнера-Дудорова

Пентозо-фосфатный путь

Таблица 2.2.5. Брожение.

Тип брожения

Представители

Конечный продукт

Примечания

Молочнокислое

Образуют из пирувата молочную кислоту

В одних случаях (гомоферментное брожение) образуется только молочная кислота, в других также побочные продукты.

Муравьинокислое

    Enterobacteriaceae

Муравьиная кислота – один из конечных продуктов. (наряду с ней – побочные)

Некоторые виды энтеробактерий расщепляют муравьиную кислоту до H 2 иCO 2/

Маслянокислое

Масляная кислота и побочные продукты

Некоторые вид ы клостридий наряду с масляной и другими кислотами образуют бутанол, ацетон и др. (тогда его называют ацетоно-бутиловое брожение).

Пропионовокислое

    Propionobacterium

Образуют из пирувата пропионовую кислоту

Многие бактерии при сбраживании углеводов наряду с другими продуктами образуют этиловый спирт. При этом он не является основным продуктом.

Таблица 2.3.1. Белоксинтезирующая система, ионный обмен.

Название элемента

Характеристика

Рибосомные субъединицы 30S и 50S

В случае бактериальных рибосом 70S субчастица 50S содержит рРНК 23S (длина ~3000 нуклеотидов) и субчастица 30S содержит рРНК 16S (длина ~1500 нуклеотидов); большая рибосомная субчастица кроме «длинной» рРНК содержит также одну или две «коротких» рРНК (5S рРНК бактериальных рибосомных субчастиц 50S или 5S и 5.8S рРНК больших рибосомных субчастиц эукариот). (подробнее – см. рис. 2.3.1.)

Матричная РНК (мРНК)

Полный комплект двадцати аминоацил-тРНК, для образования которых необходимы соответствующие аминокислоты, аминоацил-тРНК-синтетазы, тРНК и АТФ

Это заряженная энергией и связанная с тРНК аминокислота, готовая для подвоза к рибосоме и включения в синтезирующийся на ней полипептид.

Транспортная РНК (тРНК)

Рибонуклеиновая кислота, функцией которой является транспортировка аминокислот к месту синтеза белка.

Белковые факторы инициации

(у прокариот - IF-1, IF-2, IF-3) Получили свое название потому, что они участвуют в организации активного комплекса (708-комплекса) из субъединиц 30S и 50S, мРНК и инициаторной аминоацил-тРНК (у прокариот - формилметионил-тРНК), который «запускает» (инициирует) работу рибосом - трансляцию мРНК.

Белковые факторы элонгации

(у прокариот - EF-Tu, EF-Ts, EF-G) Участвуют в удлинении (элонгации) синтезируемой полипептидной цепи (пептидила). Белковые факторы терминации или освобождения (англ. - release factors - RF) обеспечивают кодон-специфическое отделение полипептида от рибосомы и окончание синтеза белка.

Название элемента

Характеристика

Белковые факторы терминации

(у прокариот - RF-1, RF-2, RF-3)

Некоторые другие белковые факторы (ассоциации, диссоциации субъединиц, высвобождения и пр.).

Белковые факторы трансляции, необходимые для функционирования системы

Гуанозинтрифосфат (ГТФ)

Для осуществления трансляции необходимо участие ГТФ. Потребность белок­синтезирующей системы в ГТФ очень специфична: он не может быть заменен ни одним из других трифосфатов. На биосинтез белка клетка затрачивает энергии больше, чем на синтез любого другого биополимера. Образование каждой новой пептидной связи требует расщепления четырех высокоэнергетических связей (АТФ и ГТФ): двух для того, чтобы нагрузить аминокислотой молекулу тРНК, и еще двух в ходе элонгации - одну при связывании аа-тРНК и другую при транслокации.

Неорганические катионы в определенной концентрации.

Для поддержания рН системы в физиологических пределах. Ионы аммония используются некоторыми бактериями для синтеза аминокислот, ионы калия - для связывания тРНК с рибосомами. Ионы железа, магния выполняют роль кофактора в ряде ферментативных процессов

Рисунок 2.3.1. Схематическое изображение структур прокариотических и эукариотических рибосом.

Таблица 2.3.2. Особенности ионного обмена у бактерий.

Особенность

Характеризуется:

Высокое осмотическое давление

Благодаря значительной внутриклеточной концентрации ионов калия в бактериях поддерживается высокое осмотическое давление.

Потребление железа

Для ряда патогенных и условно-патогенных бактерий (эшерихии, шигеллы и др.) потребление железа в организме хозяина затруднено из-за его нерастворимости при нейтральных и слабощелочных значениях pH

Сидерофоры – специальные вещества, которые, связывая железо, делают его растворимым и транспортабельным.

Ассимиляция

Бактерии активно ассимилируют из среды анионы SO2/ и Р034+ для синтеза соединений, содержащих эти элементы (серосодержащие аминокислоты, фосфолипиды и др.).

Для роста и размножения бактерий необходимы минеральные соединения - ионы NH4+, К+, Mg2+ и др. (подробнее, смотри табл. 2.3.1.)

Таблица 2.3.3. Ионный обмен

Название минеральных соединений

Функция

NH 4 + (ионы аммония)

Используются некоторыми бактериями для синтеза аминокислот

K + (ионы калия)

    Используются для связывания т-РНК с рибосомами

    Поддерживают высокое осмотическое давление

Fe 2+ (ионы железа)

    Выполняют роль кофакторов в ряде ферментативных процессов

    Входят в состав цитохромов и других гемопротеидов

Mg 2+ (ионы магния)

SO 4 2 - (сульфат-анион)

Необходимы для синтеза соединений, содержащих эти элементы (серосодержащие аминокислоты, фосфолипиды и др.)

PO 4 3- (фосфат-анион)

Схема 2.4.1. Энергетический метаболизм.

Для синтеза бактерии нуждаются в…

    Питательных веществах

Таблица 2.4.1. Энергетический метаболизм (биологическое окисление).

Процесс

Необходимо:

Синтез структурных компонентов микробной клетки и поддержание процессов жизнедеятельности

Достаточное количество энергии.

Эта потребность удовлетворяется за счет биологического окисления, в результате которого синтезируются молекулы АТФ.

Энергия (АТФ)

Железобактерии получают энергию, выделяющуюся при непосредственном окислении ими железа (Fe2+ в Fe3+), которая используется для фиксации С02, бактерии, метаболизирующие серу, обеспечивают себя энергией за счет окисления серосодержащих соединений. Однако подавляющее большинство прокариот получает энергию путем дегидрогенирования.

Получение энергии происходит также в процессе дыхания (подробную таблицу смотри в соответствующем разделе).

Схема 2.4. Биологическое окисление у прокариот.

Распад полимеров на мономеры

Углеводы

глицерин и жирные кислоты

аминокислоты

моносахариды

Расщепление в бескислородных условиях

Образование промежуточных продуктов

Окисление в кислородных условиях до конечных продуктов

Таблица 2.4.2. Энергетический метаболизм.

Понятие

Характеристика

Сущность энергетического метаболизма

Обеспечение энергией клеток, необходимой для проявления жизни.

Молекула АТФ синтезируется в результате переноса электрона от его первичного донора до конечного акцептора.

    Дыхание – биологическое окисление (расщепление).

    В зависимости от того, что является конечным акцептором электронов различают дыхание :

    Аэробное – при аэробном дыхании конечным акцептором электронов служит молекулярный кислород O 2 .

    Анаэробное – конечным акцептором электронов служат неорганические соединения: NO 3 - ,SO 3 - ,SO 4 2-

Мобилизация энергии

Энергия мобилизуются в реакциях окисления и восстановления.

Реакция Окисления

Способность вещества отдавать электроны (окисляться)

Реакция Восстановления

Способность вещества присоединять электроны.

Окислительно-восстановительный потенциал

Способность вещества отдавать (окисляться) или принимать (восстанавливаться) электроны. (количественно выражение)

Схема 2.5. Синтез.

углеводов

Таблица 2.5.1. Синтез

Таблица 2.5.1. Синтез

Биосинтез

Из чего

Примечания

Биосинтез углеводов

Автотрофы синтезируют глюкозу из CO 2 . Гетеротрофы синтезируют глюкозу из углеродсодержащих соединений.

Цикл Кальвина (см. схему 2.2.1.)

Биосинтез аминокислот

Большинство прокариот способны синтезировать все аминокислоты из:

    Пирувата

    α-кетоглутората

    фумората

Источник энергии – АТФ. Пируват образуется в гликолитическом цикле.

Ауксотрофные микроорганизмы – потребляют готовые в организме хозяина.

Биосинтез липидов

Липиды синтезируются из более простых соединений - продуктов метаболизма белков и углеводов

Важную роль играют ацетилпереносящие белки.

Ауксотрофные микроорганизмы – потребляют готовые в организме хозяина или из питательных сред.

Таблица 2.5.2. Основные этапы биосинтеза белка.

Этапы

Характеристика

Примечания

Транскрипция

Процесс синтеза РНК на генах.

Это процесс переписывания информации с ДНК – гена на мРНК – ген.

Осуществляется с помощью ДНК – зависимой РНК – полимеразы.

Перенос информации о структуре белка к рибосомам происходит с помощью мРНК.

Трансляция (передача)

Процесс собственного биосинтеза белка.

Процесс расшифровки генетического кода в мРНК и осуществление его в виде полипептидной цепи.

Поскольку каждый кодон содержит три нуклеотида, один и тот же генетический текст можно прочитать тремя разными способами (начиная с первого, второго и третьего нуклеотидов), то есть в трех разных рамках считывания.

    Примечание к таблице: Первичная структура каждого белка – последовательность расположения в нём аминокислот.

Схема 2.5.2. Цепи переноса электронов от первичного донора водорода (электронов) до конечного его акцептора O 2 .

Органическое вещество

(первичный донор электронов)

Флавопротеин (- 0,20)

Хинон (- 0, 07)

Цитохром (+0,01)

Цитохром C(+0,22)

Цитохром A(+0,34)

конечный акцептор

Таблица 3.1. Классификация организмов по типам питания.

Элемент-органоген

Типы питания

Характеристика

Углерод (С)

    Аутотрофы

Сами синтезируют все углеродосодержащие компоненты клетки из CO 2 .

    Гетеротрофы

Не могут удовлетворять свои потребности за счёт CO 2 , используют готовые органические соединения.

      Сапрофиты

Источник питания – мёртвые органические субстраты.

Источник питания – живые ткани животных и растений.

    Прототрофы

Удовлетворяют свои потребности с помощью атмосферного и минерального азота

    Ауксотрофы

Нуждаются в готовых органических азотистых соединениях.

Водород (H)

Основным источником является H 2 O

Кислород (O)

Таблица 3.1.2. Превращение энергии

Таблица 3.1.3. Способы углеродного питания

Источник энергии

Донор электронов

Способ углеродного питания

Энергия солнечного света

Неорганические соединения

Фотолитогетеротрофы

Органические соединения

Фотоорганогетеротрофы

Окислительно-восстановительные реакции

Неорганические соединения

Хемолитогетеротрофы

Органические соединения

Хемоорганогетеротрофы

Таблица 3.2. Механизмы питания:

Механизм

Условия

Градиент концентрации

Затраты энергии

Субстратная специфичность

Пассивная диффузия

Концентрация питательных веществ в среде превышает концентрацию в клетке.

По градиенту концентрации

Облегчённая диффузия

Участвуют белки пермеазы.

По градиенту концентрации

Активный транспорт

Участвуют белки пермеазы.

Транслокация химических групп

В процессе переноса происходит химическая модификация питательных веществ.

Против градиента концентрации

Таблица 3.3. Транспорт питательных веществ из бактериальной клетки.

Название

Характеристика

Фосфотрансферазная реакция

Происходит при фосфорилировании переносимой молекулы.

Контрансляционная секреция

В этом случае синтезируемые молекулы должны иметь особую лидирующую последовательность аминокислот, чтобы прикрепиться к мембране и сформировать канал, через который молекулы белка смогут выйти в окружающую среду. Таким образом выходят из клетки соответствующих бактерий токсины столбняка, дифтерии и другие молекулы

Почкование мембраны

Молекулы, образующиеся в клетке, окружаются мембранным пузырьком, который отшнуровывается в окружающую среду.

Таблица 4. Рост.

Понятие

Определение понятия.

Необратимое увеличение количества живого вещества, наиболее часто обусловленное делением клеток. Если у многоклеточных организмов обычно наблюдается увеличение размеров тела, то у многоклеточных увеличивается количество клеток. Но и у бактерий следует выделять увеличение количества клеток и увеличение клеточной массы.

Факторы, влияющие на рост бактерий invitro.

    Культуральные среды:

Mycobacterium leprae не способны in vitro к

Температура (растут в интервале):

    Мезофильные бактерии (20-40 о С)

    Термофильные бактерии (50-60 о С)

    Психрофильные (0-10 о С)

Оценка роста бактерий

Количественную оценку роста обычно проводят в жидких средах, где растущие бактерии образуют гомогенную суспензию. Увеличение количества клеток устанавливают, определяя концентрацию бактерий в 1 мл, либо определяют увеличение клеточной массы в весовых единицах, отнесённых к единице объёма.

Факторы роста

Аминокислоты

Витамины

Азотистые основания

Таблица 4.1. Факторы роста

Факторы роста

Характеристика

Функция

Аминокислоты

Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать. Такого рода микроорганизмы называются ауксотрофными по тем аминокислотам или другим соединениям, которые они не способны синтезировать.

Пуриновые основания и их производные

Нуклеотиды:

Являются факторами роста бактерий. В нуклеотидах нуждаются некоторые виды микоплазм. Требуются для построения нуклеиновых кислот.

Пиримидиновые основания и их производные

Нуклеотиды

Факторы роста

Характеристика

Функция

    Нейтральные липиды

Входят в состав мембранных липидов

    Фосфолипиды

    Жирные кислоты

Являются компонентами фосфолипидов

    Гликолипиды

У микоплазм входят в состав цитоплазматической мембраны

Витамины

(в основном группы B)

    Тиамин (B1)

Золотистый стафилококк, пневмококк, бруцеллы

    Никотиновая кислота (B3)

Все виды палочковидных бактерий

    Фолиевая кислота (B9)

Бифидобактерии и пропионовокислые

    Пантотеновая кислота (B5)

Некоторые виды стрептококков, бациллы столбняка

    Биотин (B7)

Дрожжи и азотфиксирующие бактерий Rhizobium

Гемы – компоненты цитохромов

Гемофильным бактериям, микобактериям туберкулеза

Таблица 5. Дыхание.

Название

Характеристика

Биологическое окисление (ферментативные реакции)

Основание

Дыхание основано на окислительно-восстановительных реакциях, идущих с образованием АТФ – универсального аккумулятора химической энергии.

Процессы

При дыхании происходят процессы:

    Окисление – отдача донорами водорода или электронов.

    Восстановление – присоединение водорода или электронов к акцептору.

Аэробное дыхание

Конечным акцептором водорода или электронов служит молекулярный кислород.

Анаэробное дыхание

Акцептором водорода или электронов является неорганическое соединение – NO 3 - ,SO 4 2- ,SO 3 2- .

Брожение

Акцептором водорода или электронов являются органические соединения.

Таблица 5.1. Классификация по типу дыхания.

Бактерии

Характеристика

Примечания

Строгие анаэробы

    Энергетический обмен происходит без участия свободного кислорода.

    Синтез АТФ при потреблении глюкозы в анаэробных условиях (гликолиз) происходит за счет фосфорилирования субстрата.

    Кислород для анаэробов не служит конечным акцептором электронов. Более того, молекулярный кислород оказывает на них токсическое действие

    у строгих анаэробов отсутствует фермент каталаза, поэтому накапливающаяся в присутствии кислорода оказывает на них бактерицидное действие;

    у строгих анаэробов отсутствует система регуляции окислительно-восста­новительного потенциала (редокс-потенциала).

Строгие аэробы

    Способны получать энергию только путём дыхания и поэтому обязательно нуждаются в молекулярном кислороде.

    Организмы, получающие энергию и образующие АТФ при помощи только окислительного фосфорилирования субстрата, где окислителем может выступать только молекулярный кислород. Рост большинства аэробных бактерий прекращается при концентрации кислорода в 40-50 % и выше.

К строгим аэробам относят, например, представителей рода Pseudomonas

Бактерии

Характеристика

Примечания

Факультативные анаэробы

    Растут как в присутствии, так и в отсутствии молекулярного кислорода

    Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы - один или два, облигатные анаэробы не содержат цитохромов.

К факультативным анаэробам относят энтеробактерии и многие дрожжи, способные переключаться с дыхания в присутствии 0 2 на брожение в отсутствии 0 2 .

Микроаэрофилы

Микроорганизм, требующий, в отличие от строгих анаэробов, для своего роста присутствия кислорода в атмосфере или питательной среде, но в пониженных концентрациях по сравнению с содержанием кислорода в обычном воздухе или в нормальных тканях организма хозяина (в отличие от аэробов, для роста которых необходимо нормальное содержание кислорода в атмосфере или питательной среде). Многие микроаэрофилы так же являются капнофилами, то есть им требуется повышенная концентрация углекислого газа.

В лаборатории такие организмы легко культивируются в «свечной банке». «Свечная банка» это ёмкость, в которую перед запечатыванием воздухонепроницаемой крышкой вносят горящую свечу. Пламя свечи будет гореть до тех пор, пока не потухнет от недостатка кислорода, в результате чего в банке образуется атмосфера, насыщенная диоксидом углерода, с пониженным содержанием кислорода.

Таблица 6. Характеристика размножения.

Схема 6. Зависимость продолжительности генерации от различных факторов.

Продолжительность генерации

Вид бактерии

Популяция

Температура

Состав питательной среды

Таблица 6.1. Фазы размножения бактерий.

Фаза

Характеристика

Исходная стационарная фаза

Продолжается 1-2 часа. В течение данной фазы число бактериальных клеток не увеличивается.

Лаг-фаза (фаза задержки размножения)

Характеризуется началом интенсивного роста клеток, но скорость их деления остается невысокой.

Лог-фаза (логарифмическая)

Отличается максимальной скоростью размножения клеток и увеличением численности бактериальной популяции в геометрической прогрессии

Фаза отрицательного ускорения

Характеризуется меньшей активностью бактериальных клеток и удлинением периода генерации. Это происходит в результате истощения питательной среды, накопления в ней продуктов метаболизма и дефицита кислорода.

Стационарная фаза

Характеризуется равновесием между количеством погибших, вновь образующихся и находящихся в состоянии покоя клеток.

Фаза гибели

Происходит в постоянной скоростью и сменяется УП-УШ фазами уменьшения скорости отмирания клеток.

Схема 7. Требования к питательным средам.

Требования

Вязкость

Влажность

Стерильность

Питательность

Прозрачность

Изотоничность

Таблица 7. Размножение бактерий на питательных средах.

Питательная среда

Характеристика

Плотные питательные среды

На плотных питательных средах бактерии образуют колонии – скопления клеток.

S – тип (smooth – гладкий и блестящий)

Круглые, с ровным краем, гладкие, выпуклые.

R – тип (rough – шершавый, неравный)

Неправильной формы с изрезанными краями, шероховатые, вмятые.

Жидкие питательные среды

    Придонный рост (осадок)

    Поверхностный рост (плёнка)

    Диффузный рост (равномерное помутнение)

Таблица 7.1. Классификация питательных сред.

Классификация

Виды

Примеры

По составу

    МПА – мясо-пептонный агар

    МПБ – мясо-пептонный бульон

    ПВ – пептонная вода

    Кровяной агар

    ЖСА – желточно-солевой агар

    Среды Гисса

По назначению

Основные

Элективные

    Щелочной агар

    Щелочная пептонная вода

Дифференциально - диагностические

  1. Плоскирева

Специальные

    Вильсона-Блера

    Китта-Тароцци

    Тиогликолевый бульон

    Молоко по Тукаеву

По консистенции

    Кровяной агар

    Щелочной агар

Полужидкие

    Полужидкий агар

По происхождению

Натуральные

Полусинтетические

Синтетические

  1. Симмонсона

Таблица 7.2. Принципы выделения чистой культуры клеток.

Механический принцип

Биологический принцип

1. Фракционных разведений Л. Пастера

2. Пластинчастых разведений Р. Коха

3. Поверхностных посевов Дригальського

4. Поверхностных штрихов

Приймают во внимание:

а - тип дыхания (метод Фортнера);

б - подвижность (метод Шукевича);

в - кислотоустойчивость;

г - спорообразование;

д - температурный оптимум;

е - избирательную чувствительность лабораторных животных к бактериям

Таблица 7.2.1. Этапы выделения чистой культуры клеток.

Этап

Характеристика

1 этап исследования

Забирают патологический материал. Его изучают - внешний вид, консистенция, цвет, запахом и другие признаки, готовят мазок, красят и исследуют под микроскопом.

2 этап исследования

На поверхности плотной питательной среды микроорганизмы образуют сплошной, густой рост или изолированные колонии. Колония – это видимые невооруженным глазом скопления бактерий на поверхности или в толще питательной среды. Как правило, каждая колония формируется из потомков одной микробной клетки (клоны), потому их состав достаточно однороден. Особенности роста бактерий на питательных средах являются проявлением их культуральных свойств.

3 этап исследования

Изучают характер роста чистой культуры микроорганизмов и проводят ее идентификацию.

Таблица 7.3. Идентификация бактерий.

Название

Характеристика

Биохимическая идентификация

Определение вида возбудителя по его биохимическим свойствам

Серологическая идентификация

С целью установления видовой принадлежности бактерий часто изучают их антигенное строение, то есть проводят идентификацию по антигенным свойствам

Идентификация по биологическим свойствам

Иногда идентификацию бактерий проводят, заражая лабораторных животных чистой культурой и наблюдая за теми изменениями, которые вызывают возбудители в организме

Культуральная идентификация

Определения вида возбудителей по их культуральным признакам

Морфологическая идентификация

Определение вида бактерий по их морфологическим признакам

        Какой из процессов не относится к физиологии бактерий?

    Размножение

        Какие вещества составляют 40 – 80 % сухой массы бактериальной клетки?

    Углеводы

    Нуклеиновые кислоты

        Какие классы ферментов синтезируют микроорганизмы?

    Оксиредуктазы

    Все классы

    Трансферазы

        Ферменты, концентрация которых в клетке резко возрастает в ответ на появление в среде субстрата-индуктора?

    Иидуцибельные

    Конституционные

    Репрессибельные

    Мультиферментные комплексы

        Фермент патогенности, выделяемый золотистым стафилококком?

    Нейраминидаза

    Гиалуронидаза

    Лецитиназа

    Фибринолизин

        Протеолитические ферменты выполняют функцию?

    Расщепление белков

    Расщепление жиров

    Расщепление углеводов

    Образование щелочей

        Брожение энтеробактерий?

    Молочнокислое

    Муравьинокислое

    Пропионовокислое

    Маслянокислое

        Какие минеральные соединения используются для связывания т-РНК с рибосомами?

        Биологическое окисление это…?

  1. Размножение

  2. Гибель клеток

        Какие вещества сами синтезируют все углеродосодержащие компоненты клетки из CO 2 .

    Прототрофы

    Гетеротрофы

    Автотрофы

    Сапрофиты

        Питательные среды различаются:

    По составу

    По консистенции

    По назначению

    По всему из вышеперечисленного

        Фаза размножения, которая характеризуется равновесием между количеством погибших, вновь образующихся и находящихся в состоянии покоя клеток?

  1. Фаза отрицательного ускорения

    Стационарная фаза

        Продолжительность генерации зависит от?

    Возраста

    Популяции

    Всего вышеперечисленного

        С целью установления видовой принадлежности бактерий часто изучают их антигенное строение, то есть проводят идентификацию, какую?

    Биологическую

    Морфологическую

    Серологическую

    Биохимическую

        Метод поверхностных посевов Дригальского относят к…?

    Механическим принципам выделения чистой культуры

    Биологическим принципам выделения чистой культуры

Список литературы

1. Борисов Л. Б. Медицинская микробиология, вирусология, иммунология: учебник для мед. вузов. – М.: ООО «Медицинское информационное агентство», 2005.

2. Поздеев О. К. Медицинская микробиология: учебник для мед. вузов. – М.: ГЭОТАР-МЕД, 2005.

3. Коротяев А. И., Бабичев С. А. Медицинская микробиология, иммунология и вирусология / учебник для мед. вузов. – Спб.: СпецЛит, 2000.

4.Воробьев А. А., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: учебник. – М.: Медицина, 2003.

5. Медицинская микробиология, вирусология и иммунология: учебник / под ред. В. В. Зверева, М. Н. Бойченко. – М.: ГЭОТАр-Медиа, 2014.

6. Руководство к практическим занятиям по медицинской микробиологии, вирусологии и иммунологии / под ред. В. В. Теца. – М.: Медицина, 2002.

Введение 6

Состав бактерий с точки зрения их физиологии. 7

Метаболизм 14

Питание (транспорт питательных веществ) 25

Дыхание 31

Размножение 34

Микробные сообщества 37

ПРИЛОЖЕНИЯ 49

Список литературы 105

Антигенная структура микроорганизмов очень разнообразна. У микроорганизмов различают общие, или групповые, и специфические, или типовые, антигены.

Групповые антигены являются общими для двух или более видов микробов, входящих в один род, а иногда относящихся и к разным родам. Так, общие групповые антигены имеются у отдельных типов рода сальмонелл; возбудители брюшного тифа имеют общие групповые антигены с возбудителями паратифа А и паратифа В (0-1,12).

Специфические антигены имеются только у данного вида микроба или даже только у определенного типа (варианта) либо подтипа внутри вида. Определение специфических антигенов позволяет дифференцировать микробы внутри рода, вида, подвида и даже типа (подтипа). Так, внутри рода сальмонелл по комбинации антигенов дифференцировано более 2000 типов сальмонелл, а у подвида шигелл Флекснера - 5 серотипов (серовариантов).

По локализации антигенов в микробной клетке различают соматические антигены, связанные с телом микробной клетки, капсульные - поверхностные, или оболочечные антигены и жгутиковые антигены, находящиеся в жгутиках.

Соматические, О-антигены (от нем. ohne Hauch - без дыхания), связаны с телом микробной клетки. У грамотрицательных бактерий О-антиген - сложный комплекс липидополисахаридно-белковой природы. Он высоко токсичен и является эндотоксином этих бактерий. У возбудителей кокковых инфекций, холерных вибрионов, возбудителей бруцеллеза, туберкулеза и некоторых анаэробов из тела микробных клеток выделены полисахаридные антигены, которые обусловливают типовую специфичность бактерий. Как антигены они могут быть активны в чистом виде и в комплексе с липидами.

Жгутиковые, Н-антигены (от нем. Hauch - дыхание), имеют белковую природу и находятся в жгутиках подвижных микробов. Жгутиковые антигены быстро разрушаются при нагревании и под действием фенола. Они хорошо сохраняются в присутствии формалина. Это свойство используют при изготовлении убитых диагностии кумов для реакции агглютинации, когда необходимо сохранить жгутики.

Капсульные, К - антигены , - расположены на поверхности микробной клетки и называются еще поверхностными, или оболочечными. Наиболее детально они изучены у микробов семейства кишечных, у которых различают Vi-, М-, В-, L- и А-антигены. Важное значение из них имеет Vi-антиген. Впервые он был обнаружен в штаммах бактерий брюшного тифа, обладающих высокой вирулентностью, и получил название антигена вирулентности. При иммунизации человека комплексом О- и Vi- антигенов наблюдается высокая степень защиты против брюшного тифа. Vi-антиген разрушается при 60°С и менее токсичен, чем О-антиген. Он обнаружен и у других кишечных микробов, например у кишечной палочки.



Протективный (от лат. protectio - покровительство, защита), или защитный, антиген образуется сибиреязвенными микробами в организме животных и обнаруживается в различных экссудатах при заболевании сибирской язвой. Протективный антиген является частью экзотоксина, выделяемого микробом сибирской язвы, и способен вызывать выработку иммунитета. В ответ на введение этого антигена образуются комплементсвязывающие антитела. Протективный антиген можно получить при выращивании сибиреязвенного микроба на сложной синтетической среде. Из протективного антигена приготовлена высокоэффективная химическая вакцина против сибирской язвы. Защитные протективные антигены обнаружены также у возбудителей чумы, бруцеллеза, туляремии, коклюша.

Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном. К таким антигенам относят белки животного, растительного и бактериального происхождения.

Неполноценные антигены (гаптены ) представляют собой сложные углеводы, липиды и другие вещества, не способные вызывать образование антител, но вступающие с ними в специфическую реакцию. Гаптены приобретают свойства полноценных антигенов лишь при условии введения их в организм в комплексе с белком.

Типичными представителями гаптенов являются липиды, полисахариды, нуклеиновые кислоты, а также простые вещества: краски, амины, йод, бром и др.



Вакцинация как метод профилактики инфекционных болезней. История развития вакцинации. Вакцины. Требования, предъявляемые к вакцинам. Факторы, определяющие возможность создания вакцин.

Вакцины - это биологически активные препараты, предупреждающие развитие инфекционных заболеваний и других проявлений иммунопатологии. Принцип применения вакцин заключается в опережающем создании иммунитета и, как следствие, устойчивости к развитию заболевания. Вакцинацией называют мероприятия, направленные на искусственную иммунизацию населения путем введения вакцин для повышения устойчивости к заболеванию. Цель вакцинации заключается в создании иммунологической памяти против конкретного патогена.

Различают пассивную и активную иммунизацию. Введение иммуноглобулинов, полученных от других организмов, - пассивная иммунизация. Она применяется как в терапевтических, так и профилактических целях. Введение вакцин - это активная иммунизация. Основное отличие активной иммунизации от пассивной - формирование иммунологической памяти.

Иммунологическая память обеспечивает ускоренное и более эффективное удаление чужеродных агентов при их повторном появлении в организме. Основой иммунологической памяти являются T- и B-клетки памяти.

Первая вакцина получила своё название от слова vaccinia (коровья оспа) - вирусная болезнь крупного рогатого скота. Английский врач Эдвард Дженнер впервые применил на мальчике Джеймсе Фиппсе вакцину против натуральной оспы, полученную из пузырьков на руке больного коровьей оспой, в 1796 г. Лишь спустя почти 100 лет (1876-1881) Луи Пастер сформулировал главный принцип вакцинации - применение ослабленных препаратов микроорганизмов для формирования иммунитета против вирулентных штаммов.

Некоторые из живых вакцин были созданы советскими учеными, например, П. Ф. Здродовский создал вакцину против сыпного тифа в 1957-59 годах. Вакцину против гриппа создала группа ученых: А. А. Смородинцев, В. Д. Соловьев, В. М. Жданов в 1960 году. П. А. Вершилова в 1947-51 годах создала живую вакцину отбруцеллёза .

Вакцина должна удовлетворять следующим требованиям:

● активировать клетки, участвующие в процессинге и презентации антигена;
● содержать эпитопы для T- и T-клеток, обеспечивающие клеточный и гуморальный ответ;
● легко подвергаться процессингу с последующей эффективной презентацией антигенами гистосовместимости;
● индуцировать образование эффекторных T-клеток, антителопродуцирующих клеток и соответствующих клеток памяти;
● предотвращать развитие заболевания в течение длительного времени;
● быть безвредной, то есть не вызывать серьезного заболевания и побочных эффектов.

Эффективность вакцинации - это фактически процент привитых, отреагировавших на вакцинацию формированием специфического иммунитета. Таким образом, если эффективность определенной вакцины составляет 95%, то это означает, что из 100 привитых 95 надежно защищены, а 5 все-таки подвержены риску заболевания. Эффективность вакцинации определяется тремя группами факторов. Факторы, зависящие от вакцинного препарата: свойства самой вакцины, определяющие ее иммуногенность (живая, инактивированная, корпускулярная, субъединичная, количество иммуногена и адъювантов и т.д.); качество вакцинного препарата, т. е. иммуногенность не утрачена в связи с истечением срока годности вакцины или в связи с тем, что ее неправильно хранили или транспортировали. Факторы, зависящие от вакцинируемого: генетические факторы, определяющие принципиальную возможность (или невозможность) выработки специфического иммунитета; возраст, ибо иммунный ответ самым тесным образом определяется степенью зрелости системы иммунитета; состояние здоровья «вообще» (рост, развитие и пороки развития, питание, острые или хронические болезни и др.); фоновое состояние иммунной системы - прежде всего наличие врожденных или приобретенных иммунодефицитов.

Введение. Идентификация - определение (установление) ви­довой принадлежности микроба. В настоящее время общепри­нятый метод идентификации основан на изучении определен­ного набора наиболее важных фенотипических признаков ис­следуемого микроорганизма. Критерием для идентификации является наличие у микроба совокупности основных призна­ков, характерных для данного вида (таксонометрических при­знаков). Установление вида производится согласно междуна­родной таксономии бактерий (Bergey"s Manual of Systematic Bacteriology).

К основным видовым признакам бактерий относятся:

Морфология микробной клетки;

Тинкториальные свойства - особенности окрашивания с помощью простых и сложных методов окраски;

Культуральные признаки - особенности роста микроба на питательных средах;

в биохимические признаки - наличие у бактерий фермен­тов, необходимых для синтеза или расщепления (фер­ментации) различных химических соединений.

В бактериологической практике чаще всего изучают сахаро-литические и протеолитические ферменты.

К дополнительным признакам, используемым при идентифи­кации, относятся:

Наличие видоспецифических антигенов (см. главу 10);

Чувствительность к видоспецифическим бактериофагам (см. главу 5);


Видовая резистентность к определенным антимикробным препаратам (см. главу 8);

Для патогенных бактерий - продукция определенных факторов вирулентности (см. главу 9).

Тонкая внутривидовая идентификация до биовара (серова-ра, фаговара, ферментовара и т.д.) - титрование - основана на выявлении соответствующего маркера: антигена (серотипи-рование, см. главу 10), чувствительности к типовому бактери­офагу (фаготипирование, см. главу 5) и др.

В последние годы разработаны и начали применяться со­временные биохимические и молекулярно-биологические ме­тоды идентификации: хемоидентификация, анализ нуклеино­вых кислот: рестрикционный анализ, гибридизация, полиме-разная цепная реакция (ПЦР), риботипирование и др.

План занятия

Программа

1. Идентификация бактерий.

2. Изучение биохимических свойств аэробных и ана­эробных бактерий.

▲ Демонстрация

1. Незасеянный "пестрый ряд".

2. Варианты изменения "пестрого ряда".

3. "Пестрый ряд" для анаэробных бактерий.

4. Микрометод изучения биохимических свойств бакте­рий.

5. Рост бактерий, вырабатывающих пигменты.

Задание студентам

1. Зарисовать варианты изменения "пестрого ряда".

2. Оценить результаты отсева чистой культуры: отметить наличие или отсутствие роста посеянной культуры, а также присутствие посторонних бактерий.


3. Убедиться в чистоте выделенной культуры, для этого приготовить мазок и окрасить его по методу Грама.

4. Поставить каталазную пробу на стекле и оценить ее результат.

5. Учесть результаты определения биохимической актив­ности выделенных чистых культур.

6. С помощью таблицы-определителя на основании изу­ченных морфологических, тинкториальных, культу-ральных и ферментативных свойств идентифициро­вать выделенные микробы.

▲ Методические указания

Биохимическая идентификация. Для оценки биохимической активности бактерий используют следующие реакции:

1) ферментацию - неполное расщепление субстрата до

Промежуточных продуктов, например ферментацию угле­водов с образованием органических кислот;

2) окисление - полное расщепление органического суб­страта до С0 2 и Н2О;

3) ассимиляцию (утилизацию) - использование субстрата для роста в качестве источника углерода или азота;

4) диссимиляцию (деградацию) субстрата;

5) гидролиз субстрата.

Классический (традиционный) метод идентификации мик­робов по биохимическим признакам заключается в посеве чис­той культуры на дифференциально-диагностические среды, со­держащие определенные субстраты, с целью оценки способ­ности микроорганизма ассимилировать данный субстрат или определения конечных продуктов его метаболизма. Исследова­ние занимает не менее 1 сут. Примером является оценка саха-ролитической активности бактерий (способности ферментиро­вать углеводы) с помощью посева на среды Гисса - короткий и длинный "пестрый ряд".

Идентификация бактерий по биохимическим признакам с помощью сред "пестрого ряда". Корот­кий "пестрый ряд" включает жидкие среды Гисса с моно- и дисахаридами: глюкозой, лактозой, сахарозой, мальтозой и с 6-атомным спиртом - маннитом. В длинный "пестрый ряд" наряду с перечисленными углеводами вводят среды с разнооб­разными моносахаридами (арабиноза, ксилоза, рамноза, галак­тоза и др.) и спиртами (глицерин, дульцит, инозит и др.). Для оценки способности бактерий ферментировать углевод в среды добавляют индикатор (реактив Андреде или др.), позволяющий выявить образование кислых продуктов расщепления (органи­ческих кислот), и "поплавок" для обнаружения выделения

со 2 .

Чистую культуру исследуемого микроорганизма засевают пет­лей в среды "пестрого ряда". Посевы инкубируют при 37 "С в течение 18-24 ч или больше. В том случае, если бактерии ферментируют углевод до образования кислых продуктов, на­блюдается изменение цвета среды; при разложении углевода до кислоты и газообразных продуктов наряду с изменением цвета появляется пузырек газа в поплавке. Если используют среды с полужидким агаром, то образование газа регистриру­ется по разрыву столбика. При отсутствии ферментации цвет среды не меняется. Поскольку бактерии ферментируют не все, а только определенные для каждого вида углеводы, входящие в состав сред Гисса, наблюдается довольно пестрая картина, поэтому набор сред с углеводами и цветным индикатором называют "пестрым рядом" (рис. 3.2.1; на вклейке).

Для определения протеолитических ферментов производят посев культуры бактерий уколом в столбик 10-20 % желатина,


пептонную воду. Посевы в желатине инкубируют при 20-22 °С в течение нескольких дней. При наличии протеолитических ферментов бактерии разжижают желатин, образуя фигуру, на­поминающую воронку или елочку.

В посевах в пептонную воду*определяют продукты расщеп­ления аминокислот после инкубирования в течение 2-3 сут при 37 °С путем постановки реакций на аммиак, индол, серово­дород и др.

Реакция на аммиак. Узкую полоску лакмусовой бу­маги укрепляют под пробкой так, чтобы она не соприкасалась с питательной средой. Посинение бумаги свидетельствует об образовании аммиака.

Реакция на индол. Способ Эрлиха: в пробирку с куль­турой бактерий прибавляют 2-3 мл эфира, содержимое энер­гично перемешивают и добавляют несколько капель реактива Эрлиха (спиртовой раствор парадиметиламидобензальдегида с хлористоводородной кислотой). В присутствии индола наблю­дается розовое окрашивание, при осторожном наслаивании образуется розовое кольцо (см. рис. 3.2.1).

Реакция на сероводород. В пробирку с пептонной водой помещают узкую полоску фильтровальной бумаги, смоченную сульфатом железа, и закрепляют ее под пробкой так, чтобы она не соприкасалась с питательной средой. При выделении серо­водорода образуется нерастворимый сульфид железа (FeS), ок­рашивающий бумагу в черный цвет (см. рис. 3.2.1). Продукцию H 2 S можно определять также путем посева культуры бактерий уколом в столбик с питательной средой, содержащей реактивы для выявления H 2 S (смесь солей: сульфат железа, тиосульфат натрия, сульфит натрия). Положительный результат - среда приобретает черный цвет за счет образования FeS.

Обнаружение каталазы. На предметное стекло нано­сят каплю 1-3 % раствора пероксида водорода и вносят в нее петлю с бактериальной культурой. Каталаза разлагает пероксид водорода на кислород и воду. Выделение пузырьков газа свидетельствует о наличии у данного вида бактерий ката­лазы.

В бактериологической практике иногда ограничиваются изучением сахаролитических и протеолитических признаков исследуемых бактерий, если этого достаточно для их иденти­фикации. При необходимости Исследуют другие признаки, на­пример способность к восстановлению нитратов, карбоксили-рованию аминокислот, образованию оксидазы, плазмокоагула-зы, фибринолизина и других ферментов.

Результаты работ по идентификации выделенной культуры протоколируют (табл. 3.2.1).

Биохимические тесты 2-го поколения, основанные на при­менении концентрированных субстратов и более чувствитель­ных методов обнаружения конечных продуктов реакции, по-

Идентификация микробов – это определение систематического положения выделенной из какого-либо источника культуры до уровня вида или варианта. В случае уверенности в чистоте выделенной в процессе культурального метода культуры приступают к ее идентификации, опираясь при этом на ключи (то есть известный перечень ферментативной активности, известную антигенную структуру), классификацию и характеристику типовых штаммов, описанных в руководствах.

В целях идентификации используют комплекс признаков: морфологических (форма, размеры, структура, наличие жгутиков, капсулы, спор, взаимное расположение в мазке), тинкториальных (окраска по Граму и иными методами), химических (Г+Ц в ДНК и содержание, напр., пептидогликана, целлюлозы, хитина и др.), культуральных (питательные потребности, условия, темпы и характер роста на разных средах), биохимических (ферментативная деградация и трансформация различных веществ с образованием промежуточных и конечных продуктов), серологических (антигенная структура, специфичность, связи), экологических (вирулентность, токсигенность, токсичность, аллергенность микробов и их продуктов, круг восприимчивых животных и др. биосистем, тропизм, межвидовые и внутривидовые взаимоотношения, влияние факторов внешней среды, включая фаги, бактериоцины, антибиотики, антисептики, дезинфектанты).

При идентификации микроорганизмов нет необходимости изучать все свойства. Более того, с экономической точки зрения важно, чтобы круг испытанных тестов был не большим, чем это необходимо ; желательно также использовать простые (но надежные) тесты, доступные широкому кругу лабораторий.

Идентификацию микроорганизмов начинают с отнесения культуры к крупным таксонам (тип, класс, порядок, сем.). Для этого часто достаточно определить источник получения культуры, морфологические и культуральные свойства, окраски по Граму или Романовскому-Гимзе. Для установления рода, вида и особенно варианта приходится применять определение биохимических, серологических, экологических признаков. Схемы идентификации микробов существенно различаются. Так, в идентификации бактерии акцент делают на биохимические и серологические свойства, грибов и простейших - на морфологические особенности клеток и колоний. При идентификации вирусов используют метод молекулярной гибридизации для установления специфичности генома, а также специальные серологические реакции.

Биохимическая идентификация чистой культуры бактерий проводится с помощью дифференциально-диагностических сред. Дифференциально-диагностические среды содержат субстрат для какого-либо фермента, выявляемого у микроба, и индикатор, фиксирующий изменение рН питательной среды и окрашивающий ее в цвета, характерные для кислых или щелочных значений рН (рис.2.1).

Рис.2.1. Пример биохимической (ферментативной) активности представителей семейства энтеробактерий. В среды добавлен индикатор - бромфеноловый синий, при нейтральных значениях рН среда имеет травянисто-зеленый цвет, при кислых значениях - жёлтый, при щелочных значениях рН - синий. Индол - щелочной продукт, наличие уреазы сопровождается образованием мочевины (щелочные значения рН), ферментация углеводов сопровождается образованием кислоты. Положительная проба на сероводород сопровождается почернением среды вследствие действия специального реактива

Серологическая идентификация подразумевает определение антигенной специфичности исследуемой культуры микробов и антигенной формулы - символического отображение антигенной структуры бактерий. Например, антигенную структуру S. typhi обозначают как O9,12:Vi:Hd; одного из сероваров E. coli - как O111:K58:H2. Антигенную формулу определяют в реакции агглютинации на стекле с помощью набора монорецепторных антисывороток, т.е. антител к определенным антигенам бактерий. В качестве исследуемых антигенов используют выращенную культуру бактерий, каждый микроб представляет собой корпускулярный антиген, дающий феномен агглютинации при добавлении специфичных ему антител. Некоторые проблемы возникают при исследовании капсульных бактерий: капсула экранирует соматический антиген, поэтому для исследования его бактериальную культуру прогревают. Высокая температура способствует разрушению термолабильной капсулы и О-антиген становится доступным для типирования. Техника постановки реакции агглютинации на стекле . На чистое обезжиренное стекло наносят каплю физ.раствора (контроль) и каплю антисыворотки. Если антисывороток несколько, то берут несколько стекол. В каждую каплю вносят с помощью бактериальной петли культуру микробов. В течение 1-3 мин наблюдают за появление агглютинатов, которые образуются при специфическом связывании определенных антител с бактериальными антигенами и их последующим объединением в крупные видимые глазом хлопья.

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем;

2) внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов:

1) антигенность – способность вызывать образование антител;

2) иммуногенность – способность создавать иммунитет;

3) специфичность – антигенные особенности, благодаря наличию которых антигены отличаются друг от друга.

Гаптены – низкомолекулярные вещества, которые в обычных условиях не вызывают иммунной реакции, но при связывании с высокомолекулярными молекулами приобретают иммуногенность. К гаптенам относятся лекарственные препараты и большинство химических веществ. Они способны вызывать иммунный ответ после связывания с белками организма.

Антигены или гаптены, которые при повторном попадании в организм вызывают аллергическую реакцию, называются аллергенами.

2. Антигены микроорганизмов

Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших.

Существуют следующие разновидности бактериальных антигенов:

1) группоспецифические (встречаются у разных видов одного рода или семейства);

2) видоспецифические (встречаются у различных представителей одного вида);

3) типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

В зависимости от локализации в бактериальной клетке различают:

1) О – АГ – полисахарид; входит в состав клеточной стенки бактерий. Определяет антигенную специфичность липополисахарида клеточной стенки; по нему различают сероварианты бактерий одного вида. О – АГ слабо иммуногенен. Он термостабилен (выдерживает кипячение в течение 1–2 ч), химически устойчив (выдерживает обработку формалином и этанолом);

2) липид А – гетеродимер; содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью;

3) Н – АГ; входит в состав бактериальных жгутиков, основа его – белок флагеллин. Термолабилен;

4) К – АГ – гетерогенная группа поверхностных, капсульных антигенов бактерий. Они находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки;

5) токсины, нуклеопротеины, рибосомы и ферменты бактерий.

Антигены вирусов:

1) суперкапсидные антигены – поверхностные оболочечные;

2) белковые и гликопротеидные антигены;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевинные) антигены.

Все вирусные антигены Т-зависимые.

Протективные антигены – это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

Пути проникновения инфекционных антигенов в организм:

1) через поврежденную и иногда неповрежденную кожу;

2) через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции.

У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).