Значение слова когерентность. Спектроскопия ЯМР высокого разрешения в органической и металлорганической химии Когерентность источников излучения означает что

Когерентност ь (от латинского cohaerens – находящийся в связи) рассматривается как согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называют когерентными, если разность их фаз остается постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания. Два гармонических (синусоидальных) колебания одной частоты когерентны.

При сложении двух гармонических колебаний с одинаковой частотой, но с различными амплитудами A 1 и A 2 и фазами φ 1 и φ 2 образуется гармоническое колебание той же частоты ν :

причем амплитуда результирующих колебаний

а фазовый сдвиг

Амплитуда результирующих колебаний может изменяться от A 1 + A 2 до A 1 - A 2 в зависимости от разности фаз φ 1 - φ 1 .

Когерентность проявляется как свойство двух (или большего числа) колебательных процессов, способных при сложении взаимно усиливать или ослаблять эффект взаимодействия.

Вынужденное излучение фотонов имеет существенные особенности. Во-первых, частота кванта света, излученного под действием внешнего монохроматического поля, точно совпадает с частотой внешнего поля. Во-вторых, направление распространения и поляризация излученного фотона совпадают с направлением распространения и поляризацией внешнего электромагнитного поля, вызывающего излучение. Таким образом, излучения отдельных элементарных излучателей, находящихся под действием общего внешнего поля, будут когерентными. Эти особенности вынужденного излучения квантов света характерны для активной среды лазеров и эффективно используются для усиления и формирования мощного монохроматического излучения.

Для пояснения понятия когерентности удобно воспользоваться волновым представлением света. На рис. 6 излучение изображено в виде «элементарных волн», зарождающихся в активной среде; их обычно называют цугами. Ситуация на рис. 3.13а соответствует некогерентному свету, а на рис. 3.13б - идеально когерентному. В последнем случае все волновые цуги распространяются в одном и том же направлении, имеют одинаковую длину волны и находятся в фазе друг с другом. Все это есть следствие вынужденного испускания света. При вынужденном испускании вторичный цуг точно копирует первичный цуг по направлению распространения, по длине волны, по фазе. На рис. 3.13б штриховой прямой показана поверхность одинаковой фазы (волновой фронт).

Рисунок.3.13 Схема распространения некогерентного (а) и когерентного (б) света

Когерентность лазерного луча проявляется, в частности, в исключительно высокой степени его монохроматичности, а также в очень малой расходимости лазерного луча.

Направленность

Направленность является одним из основных свойств излучения лазеров. Направленным является излучение, распространяющееся в пределах небольшого телесного угла.

Мерой параллельности излучения является расходимость лазерного пучка.

Расходимость лазерного излучения – это плоский θ или телесный угол с вершиной, совпадающей с точкой пересечения оси резонатора с плоскостью перетяжки.

Эту расходимость также называют угловой. Пространственные параметры лазерного пучка получают экспериментальным путем или рассчитывают по известным параметрам резонатора. Связь параметров пучка с параметрами резонатора определяется типом резонатора.

На рис. 3.14 представлен конфокальный резонатор, состоящий из двух зеркал 1, 2 с радиусами r 1 и r 2 соответственно. В случае r 1 = r 2 перетяжка излучения будет находиться в центре резонатора, ее диаметр (для одномодового излучения) определяется выражением:

где = 2 - волновое число; d - длина резонатора.

Диаметр излучения на расстоянии z от перетяжки выражается формулой:

.

Рисунок 3.14 – Схема конфокального резонатора

Расходимость пучка при равномерном распределении энергии, что соответствует многомодовому характеру излучения, определяется равенством:

где 2у - размер диафрагмы на выходном зеркале; k Ф - коэффициент, зависящий от распределения энергии и формы активного элемента.

При равномерном распределении энергии для круглой диафрагмы k Ф = 1, для гауссового пучка k Ф = 1,22.

Без применения дополнительных оптических систем расходимость газовых лазеров составляет единицы угловых минут, твердотельных – до нескольких десятков минут, полупроводниковых – до десятков градусов.

Расходимость пучка можно уменьшить путем его коллимации с фокусировкой лазерного пучка (в фокусе оптической системы помещают диафрагму малого диаметра - пространственный фильтр) и без фокусировки лазерного пучка - путем пропускания пучка через телескоп (рис. 3.15), который преобразует параллельный пучок лучей, входящий в систему, также в параллельный пучок лучей на выходе из нее с увеличенной апертурой (диаметром) пучка.

Рисунок 3.15 – Коллимация пучка с помощью двухлинзового телескопа

При этом расходимость лазерного излучения обратно пропорциональна увеличению β используемого телескопа (β = D2/D1):

где 1,2 - расходимость пучка на входе в телескоп и на выходе из него соответственно;D 1 , D 2 - диаметр пучка на входе в телескоп и на выходе из него соответственно. При этом лазерный пучок должен полностью заполнять телескоп.

Минимальное достижимое значение расходимости определяется дифракционными явлениями оптического волнового фронта на выходном компоненте коллимирующей системы.

В технической характеристике (паспорте) обычно указывают в качестве расходимости угол 2θ.

Интенсивность

Понятие интенсивности применяется для оценки фотометрических величин, с помощью которых характеризуется излучение лазера: силы излучения, яркости, потока и т.д. При больших значениях этих величин обычно утверждается, что излучение является интенсивным. Излучение лазера, благодаря высокой степени направленности излучения, может быть интенсивным даже в том случае, когда мощность излучения сравнительно невелика.

Сила излучения лазера характеризует пространственную плотность потока излучения, то есть величину лучистого потока, приходящегося на единицу телесного угла, в котором распространяется излучение, и определяется по формуле:

где Фэ - мощность излучения, Вт; Ω=α 2 - телесный угол, стер; α - апертурный угол конуса, которым образован телесный угол, рад.

При одномодовом излучении лазера, расходимость которого 2θ (телесный угол соответственно равен α = 4θ 2), сила излучения в направлении, характеризуемом апертурным углом 2θ к оси, равна

Если сравнивать, например, по силе излучения лампу накаливания и лазер, то при одной и той же потребляемой мощности лазеры оказываются более интенсивными, обладая более низким КПД. Например, лампа накаливания мощностью 66 Вт обладает средней силой излучения

а лазер типа ЛГ-55 с потребляемой мощностью 66 Вт, мощностью излучения 2 10 -3 Вт и расходимостью 10" характеризуется силой излучения

Вт/стер.

Поток излучения (мощность лазера) Фэ представляет энергию вынужденного излучения (энергию генерации), проходящего через поперечное сечение в единицу времени: Фэ = dQe/dt . Если излучение происходит на основной моде, то величина потока Фэ определяется соотношением радиуса рассматриваемого сечения r и размера пятна моды ω:

где Ф 0 - полный поток лазера, измеренный при r>>ω.

Переход энергетической величины потока (Вт) к световому (лм) осуществляется по формуле

Ф=638Фэ ,

где 683 лм/Вт - световой эквивалент лучистой энергии на длине волны, соответствующей максимуму чувствительности глаза (λ = 0,55 мкм).

Переход от светотехнической величины потока к энергетической осуществляется по формуле

Фэ=АФ ,

где А = 0,00146 Вт/лм - механический эквивалент света (А = 1/683).

При импульсном излучении режим регулярной последовательности импульсов характеризуется средним потоком излучения, то есть средним значением потока за заданный промежуток времени:

Фср=Фи∆t/T ,

где Фи - поток в импульсе; ∆t - длительность импульса; Т - период повторения импульсов.

В допечатных процессах при записи изображения осуществляют управление интенсивностью лазерного луча по принципу «да - нет», при котором интенсивность меняется от максимального значения до нуля, для формирования печатающих или пробельных элементов формы, а также для приведения в соответствие интенсивности с свето- или термочувствительностью записываемых материалов. Для управления интенсивностью служат специальные устройства – модуляторы излучения.

Результат сложения двух гармонических колебаний зависит от разности фаз , которая меняется при переходе к другой пространственной точке. Возможны два варианта:

1) Если оба колебания не согласованы друг с другом, т.е. разность фаз изменяется с течением времени произвольным образом , то такие колебания называются некогерентными. В реальных колебательных процессах из-за непрерывного хаотического (случайного) изменения и среднее по времени значение , т.е. хаотическая смена таких мгновенных картин глазом не воспринимается и создается ощущение ровного потока света, не изменяющегося во времени. Поэтому амплитуда результирующего колебания выразится формулой:

Интенсивность результирующего колебания в этом случае равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

2) Если разность фаз постоянна во времени , то такие колебания (волны) называются когерентными (связанными).

В общем случае когерентными называются волны одинаковой частоты, у которых разность фаз .

В случае суперпозиции когерентных волн интенсивность результирующего колебания определяется формулой:

где - называется интерференционным членом, который и оказывает наибольшее влияние на результирующую интенсивность:

а) если , то результирующая интенсивность ;

б) если , то результирующая интенсивность .

Это значит, что если разность фаз складываемых колебаний остается постоянной в течение времени (колебания или волны являются когерентными), то амплитуда суммарного колебания в зависимости от принимает значения от при , , до , (Рис. 6.3) .

Более наглядно интерференция проявляется тогда, когда интенсивности складываемых колебаний равны:

Очевидно, что максимальная интенсивность результирующего колебания будет наблюдаться при и будет равна:

Минимальная интенсивность результирующего колебания будет наблюдаться при и будет равна:

Таким образом, при наложении гармонических когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией световых волн.

Интерференция характерна для волн любой природы. Особенно наглядно можно наблюдать интерференцию, например, для волн на поверхности воды или звуковых волн. Интерференция же световых волн в повседневной жизни встречается не так часто, так как ее наблюдение требует определенных условий, поскольку, во-первых, обычный свет естественный свет не является монохроматическим (фиксированной частоты) источником. Во-вторых, обычные источники света - некогерентные, поскольку при наложении световых волн от разных источников разность фаз световых колебаний изменяется с течением времени случайным образом , и устойчивой интерференционной картины не наблюдается. Для получения четкой интерференционной картины необходимо, чтобы накладываемые волны были когерентны.



Когерентность- согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении. Общий принцип получения когерентных волн состоит в следующем: волну, излучаемую одним источником света, разделяют каким-либо способом на две или более число вторичных волн, в результате чего эти волны когерентны (разность их фаз - величина постоянная, так как они "произошли" от одного источника). Затем после прохождения различных оптических путей эти волны каким-либо способом накладывают друг на друга и наблюдают интерференцию.

Пусть два точечных когерентных источника света и излучают монохроматический свет (Рис. 6.4). Для них должны выполнятся условия когерентности:

До точки P первый луч проходит в среде с показателем преломления путь , второй луч проходит в среде с показателем преломления - путь . Расстояния и от источников до наблюдаемой точки называются геометрические длины путей лучей. Произведение показателя преломления среды на геометрическую длину пути называется оптической длиной пути. и - оптические длины первого и второго лучей, соответственно.

Пусть и - фазовые скорости волн. Первый луч возбудит в точке P колебание:

а второй луч - колебание

Разность фаз колебаний, возбуждаемых лучами в точкеP , будет равна:

Т.к. (- длина волны в вакууме), то выражению для разности фаз можно придать вид

есть величина, называемая оптической разностью хода. При расчете интерференционных картин следует учитывать именно оптическую разность хода лучей, т.е. показатели преломления сред, в которых лучи распространяются.

Из выражения для разности фаз видно, что если оптическая разность хода равна целому числу длин волн в вакууме

то разность фаз и колебания будут происходить с одинаковой фазой. Число называется порядком интерференции. Следовательно, это условие есть условие интерференционного максимума.

Если оптическая разность хода равна полуцелому числу длин волн в вакууме

то , так что колебания в точке P находятся в противофазе. Это условие интерференционного минимума.

Итак, если на длине равной оптической разности хода лучей , укладывается четное число длин полуволн, то в данной точке экрана наблюдается максимум интенсивности. Если на длине оптической разности хода лучей укладывается нечетное число длин полуволн, то в данной точки экрана наблюдается минимум освещенности.

Если два пути лучей оптически эквивалентны, они называются таутохронными, а оптические системы - линзы, зеркала - удовлетворяют условию таутохронизма.

Когерентные волны – это колебания с постоянной разностью фаз. Разумеется, условие выполняется не в каждой точке пространства, лишь на отдельных участках. Очевидно, что для удовлетворения определению частоты колебаний также предвидятся равными. Прочие волны бывают когерентны лишь на некотором участке пространства, а дальше разность фаз меняется, и это определение использовать уже нельзя.

Обоснование применения

Когерентные волны считаются упрощением, не встречающимся на практике. Математическая абстракция помогает во многих отраслях науки: космос, термоядерные и астрофизические исследования, акустика, музыка, электроника и, конечно, оптика.

Для реальных приложений применяются упрощённые методы, в числе последних трёхволновая система, основы применимости кратко изложены ниже. Для анализа взаимодействия возможно задать, к примеру, гидродинамическую или кинетическую модель.

Решение уравнений для когерентных волн позволяет предсказать устойчивость систем, функционирующих с использованием плазмы. Теоретический подсчёт показывает, что иногда амплитуда результата за короткое время растёт бесконечно. Что означает создание взрывоопасной ситуации. Решая уравнения для когерентных волн, подбором условий удаётся избежать неприятных последствий.

Определения

Вначале введём ряд определений:

  • Монохроматической называется волна единственной частоты. Ширина её спектра равна нулю. На графике это единственная гармоника.
  • Спектр сигнала – графическое представление амплитуды слагающих гармоник, где по оси абсцисс (ось Х, горизонтальная) откладывается частота. Спектром синусоидального колебания (монохроматической волны) становится единственная спектринка (вертикальная чёрточка).
  • Преобразованиями Фурье (обратным и прямым) называют разложение сложного колебания на монохроматические гармоники и обратное сложение целого из разрозненных спектринок.
  • Волновой анализ цепей для сложных сигналов не проводится. Вместо этого происходит разложение на отдельные синусоидальные (монохроматические) гармоники, для каждой сравнительно просто составить формулы описания поведения. При расчёте на ЭВМ этого хватает для анализа любых ситуаций.
  • Спектр любого непериодического сигнала бесконечен. Границы его обрезаются до разумных пределов перед проведением анализа.
  • Дифракцией называется отклонение луча (волны) от прямолинейной траектории вследствие взаимодействия со средой распространения. К примеру, проявляется при преодолении фронтом щели в препятствии.
  • Интерференцией называется явление сложения волн. Из-за чего наблюдается весьма причудливая картина из чередующихся полос света и тени.
  • Рефракцией называется преломление хода волны на разделе двух сред с различными параметрами.

Понятие когерентности

Советская энциклопедия говорит, что волны одинаковой частоты неизменно когерентны. Это верно исключительно для отдельно взятых неподвижных точек пространства. Фаза определяет результат сложения колебаний. К примеру, противофазные волны одной амплитуды дают прямую линию. Такие колебания гасят друг друга. Самая большая амплитуда у синфазных волн (разность фаз равна нулю). На этом факте основан принцип действия лазеров, зеркальная и фокусирующая система пучков света, особенности получения излучения делают возможной передачу информации на колоссальные расстояния.

Согласно теории взаимодействия колебаний когерентные волны образуют интерференционную картину. У новичка возникает вопрос: свет лампочки не кажется полосатым. По простой причине, что излучение не одной частоты, а лежит в пределах отрезка спектра. И участок, причём, приличной ширины. Из-за неоднородности частот волны беспорядочные, не проявляют свои теоретически и экспериментально в лабораториях обоснованные и доказанные свойства.

Хорошей когерентностью обладает луч лазера. Его используют для связи на дальние расстояния при прямой видимости и прочих целей. Когерентные волны дальше распространяются в пространстве и на приёмнике подкрепляют друг друга. В пучке света разрозненной частоты эффекты способны вычитаться. Возможно подобрать условия, что излучение исходит от источника, но на приёмнике не зарегистрируется.

Обычный свет лампочки тоже работает не на полную мощность. Достичь КПД в 100% на современном этапе развития техники не представляется возможным. К примеру, газоразрядные лампы страдают сильной дисперсией частот. Что касается светодиодов, основатели концепции нанотехнологий обещали создать элементную базу для производства полупроводниковых лазеров, но напрасно. Значительная часть разработок засекречена и рядовому обывателю недоступна.

Лишь когерентные волны проявляют волновые качества. Действуют согласованно, как лучинки веника: по одной легко сломать, вместе взятые – выметают мусор. Волновые свойства – дифракция, интерференция и рефракция – характерны для всех колебаний. Просто зарегистрировать эффект сложнее из-за беспорядочности процесса.

Когерентные волны не демонстрируют дисперсии. Показывают одну частоту и одинаково отклоняются призмой. Все примеры волновых процессов в физике даются, как правило, для когерентных колебаний. На практике приходится учитывать присутствующую малую ширину спектра. Что накладывает особенности на процесс расчёта. Как зависит реальный результат от относительной когерентности волны – пытаются ответить многочисленные учебники и разрозненные издания с замысловатыми названиями! Единого ответа не существует, он сильно зависит от отдельно взятой ситуации.

Волновые пакеты

Для облегчения решения практической задачи можно ввести, к примеру, определение волнового пакета. Каждый из них разбивается дальше на мелкие части. И эти подразделы взаимодействуют когерентно между аналогичными частотами другого пакета. Подобный аналитический метод широко распространён в радиотехнике и электронике. В частности, понятие спектра изначально вводилось для того, чтобы дать в руки инженеров надёжный инструмент, позволяющий оценить поведение сложного сигнала в конкретных случаях. Оценивается малая толика воздействия каждого гармонического колебания на систему, потом конечный эффект находится их полным сложением.

Следовательно, при оценке реальных процессов, не являющихся даже близко когерентными, допустимо разбить объект анализа на простейшие составляющие, чтобы оценить результат процесса. Расчёт упрощается с применением вычислительной техники. Машинные эксперименты показывают достоверность формул для имеющейся ситуации.

На начальном этапе анализа полагают, что пакеты с малой шириной спектра возможно условно заменить гармоническими колебаниями и в дальнейшем пользоваться обратным и прямым преобразованием Фурье для оценки результата. Эксперименты показали, что разброс фаз между выбранными пакетами постепенно возрастает (колеблется с постепенным увеличением разброса). Но для трёх волн разница постепенно сглаживается, согласуясь с излагаемой теорией. Накладывается ряд ограничений:

  1. Пространство должно быть бесконечным и однородным (k-пространство).
  2. Амплитуда волны не затухает с увеличением дальности, но меняется с течением времени.

Доказано, что в такой среде каждой волне удаётся подобрать конечный спектр, что автоматически делает возможным машинный анализ, а при взаимодействии пакетов спектр результирующей волны уширяется. Колебания по сути когерентными не считаются, но описываются уравнением суперпозиции, представленном ниже. Где волновой вектор ω(k) определяется по дисперсионному уравнению; Еk признано амплитудой гармоники рассматриваемого пакета; k – волновое число; r – пространственная координата, для показателя решается представленное уравнение; t – время.

Время когерентности

В реальной ситуации разнородные пакеты когерентны лишь на отдельном интервале. А далее расхождение фаз становится слишком большим, чтобы применять описанное выше уравнение. Чтобы вывести условия возможности вычислений, вводится понятие времени когерентности.

Полагается, что в начальный момент фазы всех пакетов одинаковы. Выбранные элементарные доли волны когерентны. Тогда искомое время находится как отношение числа Пи к ширине спектра пакета. Если время превысило когерентное, в данном участке уже нельзя использовать формулу суперпозиции для сложения колебаний – фазы слишком сильно отличаются друг от друга. Волна уже не когерентна.

Пакет возможно рассматривать, словно он характеризуется случайной фазой. В этом случае взаимодействие волн идёт по отличающейся схеме. Тогда находятся фурье-компоненты по указанной формуле для дальнейших расчётов. Причём взятые для расчёта две прочие компоненты берутся из трёх пакетов. Это случай совпадения с теорией, упомянутый выше. Следовательно, уравнение показывает зависимость всех пакетов. Точнее – результата сложения.

Для получения наилучшего результата нужно, чтобы ширина спектра пакета не превышала числа Пи, делённого на время решения задачи суперпозиции когерентных волн. При расстройке частоты амплитуды гармоник начинают осциллировать, точный результат получить сложно. И наоборот, для двух когерентных колебаний формула сложения упрощается максимально. Амплитуда находится как квадратный корень из суммы исходных гармоник, возведённых в квадрат и сложенных с собственным удвоенным произведением, помноженным на косинус разности фаз. У когерентных величин угол равен нулю, результат, как уже указано выше, получается максимальным.

Наравне с временем и длиной когерентности используют термин «длина цуга», что является аналогом второго термина. Для солнечного света эта дистанция составляет один микрон. Спектр нашего светила крайне широкий, что объясняет настолько мизерную дистанцию, где излучение считается когерентным самому себе. Для сравнения, длина цуга газового разряда достигает 10 см (в 100000 раз больше), а у лазера излучение сохраняет свойства и на километровых расстояниях.

С радиоволнами намного проще. Кварцевые резонаторы позволяют достичь высокой когерентности волны, чем объясняются пятна уверенного приёма на местности, граничащие с зонами молчания. Аналогичное проявляется при изменении имеющейся картины с течением суток, движением облаков и прочими факторами. Изменяются условия распространения когерентной волны, и интерференционная суперпозиция оказывает влияние в полной мере. В радиодиапазоне на низких частотах длина когерентности может превышать поперечник Солнечной системы.

Условия сложения сильно зависят от формы фронта. Наиболее просто задача решается для плоской волны. В действительности фронт обычно является сферическим. Точки синфазности находятся на поверхности шара. В бесконечно удалённой от источника местности условие плоскости возможно принять за аксиому, и дальнейший расчёт вести согласно взятому постулату. Чем ниже частота, тем проще создать условия для выполнения расчёта. И наоборот, источники света со сферическим фронтом (вспомним Солнце) сложно подогнать под стройную теорию, написанную в учебниках.

КОГЕРЕНТНОСТЬ (от лат. cohaerentio – связь, сцепление) – согласованное протекание в пространстве и во времени нескольких колебательных или волновых процессов, при котором разность их фаз остается постоянной. Это означает, что волны (звук , свет , волны на поверхности воды и пр.) распространяются синхронно, отставая одна от другой на вполне определенную величину. При сложении когерентных колебаний возникает интерференция ; амплитуду суммарных колебаний определяет разность фаз.

Гармонические колебания описывает выражение

A (t ) = A 0 cos(w t + j ),

где A 0 – начальная амплитуда колебания, A (t ) – амплитуда в момент времени t , w – частота колебания, j – его фаза.

Колебания когерентны, если их фазы j 1, j 2 ... меняются беспорядочно, но их разность Dj = j 1 – j 2 ... остается постоянной. Если же разность фаз меняется, колебания остаются когерентными, пока она по величине не станет сравнима с p .

Распространяясь от источника колебаний, волна через какое-то время t может «забыть» первоначальное значение своей фазы и стать некогерентной самой себе. Изменение фазы обычно происходит постепенно, и время t 0, в течение которого величина Dj остается меньше p , называется временнóй когерентностью. Ее величина непосредственно связана с надежностью источника колебаний: чем стабильнее он работает, тем больше временнáя когерентность колебания.

За время t 0 волна, двигаясь со скоростью с , проходит расстояние l = t 0c , которое называется длиной когерентности,или длинойцуга, то есть отрезка волны, имеющего неизменную фазу. В реальной плоской волне фаза колебаний меняется не только вдоль направления распространения волны, но и в плоскости, перпендикулярной ему. В этом случае говорят о пространственной когерентности волны.

Первое определение когерентности дал Томас Юнг в 1801 при описании законов интерференции света, проходящего через две щели: «интерферируют две части одного и того же света». Суть этого определения состоит в следующем.

Обычные источники оптического излучения состоят из множества атомов, ионов или молекул, самопроизвольно испускающих фотоны. Каждый акт испускания длится 10 –5 – 10 –8 секунды; следуют они беспорядочно и со случайно распределенными фазами как в пространстве, так и во времени. Такое излучение некогерентно, на освещенном им экране наблюдается усредненная сумма всех колебаний, а картина интерференции отсутствует. Поэтому для получения интерференции от обычного источника света его луч раздваивают при помощи пары щелей, бипризмы или зеркал, поставленных под небольшим углом одно к другому, а затем сводят вместе обе части. Фактически здесь речь идет о согласованности, когерентности двух лучей одного акта излучения, происходящего случайным образом.

Когерентность лазерного излучения имеет другую природу. Атомы (ионы, молекулы) активного вещества лазера испускают вынужденное излучение, вызванное пролетом постороннего фотона, «в такт», с одинаковыми фазами, равными фазе первичного, вынуждающего излучения (см . ЛАЗЕР).

В наиболее широкой трактовке под когерентностью сегодня понимают совместное протекание двух или нескольких случайных процессов в квантовой механике, акустике, радиофизике и пр.

Сергей Транковсий

(от лат. cohaerens- находящийся в связи), согласованное протекание во времени и в пр-ве неск. колебат. или волн. процессов, проявляющееся при их сложении. Колебания наз. когерентными, если разность их фаз остаётся постоянной (или закономерно изменяется) во времени и при сложении колебаний определяет амплитуду суммарного . Гармонич. колебание описывается выражением:

Р(t)=Acos(wt+j), (1)

где Р - изменяющаяся величина (смещение маятника, напряжённость электрич. и магн. полей и т. д.), а амплитуда А, частота со и j - константы. При сложении двух гармонич. колебаний с одинаковой частотой со, но разными амплитудами A1 и А2 и фазами j1 и j2 образуется гармонич. колебание той же частоты. Амплитуда результирующего колебания

Ар =?(A21+A22+2A1A2cos(j1-j2)) (2)

может изменяться в пределах от A1+A2 до AI-A2 в зависимости от разности фаз j1-j2 (рис.).

В действительности идеально гармонич. колебания неосуществимы. В реальных колебат. процессах амплитуда, частота и могут непрерывно хаотически изменяться во времени.

Сложение двух гармонич. колебаний (пунктир) с амплитудами A1 и A2 при разл. разностях фаз. Результирующее колебание - сплошная линия.

Если фазы двух колебаний j1 и j2 изменяются беспорядочно, но их разность j1-j2 остаётся постоянной, то амплитуда суммарного колебания определяется разностью фаз складываемых колебаний, т. е. колебания когерентны. Если разность фаз двух колебаний изменяется очень медленно, то в этом случае колебания остаются когерентными лишь в течение нек-рого времени, пока их разность фаз не успела измениться на величину, сравнимую с я.

Если сравнивать фазы одного и того же колебания в разные времени, разделённые интервалом т, то при достаточно большом т случайное изменение фазы колебания может превысить л. Это означает, что через т гармонич. колебание «забывает» свою первонач. фазу и становится некогерентным «самому себе». С ростом т К. обычно ослабевает постепенно. Для количеств, хар-ки этого явления вводят ф-цию R (t), наз. функцией корреляции. Результат сложения двух колебаний, полученных от одного источника и задержанных друг относительно друга на время t, можно представить с помощью R (t) в виде:

Ар = ?(A21+A22+2A1A2R (t)coswt) , (3)

где w - ср. частота колебания. Ф-ция R(t)=1 при t=0 и обычно спадает до 0 при неогранич. росте t. Значение т, при к-ром R(t)=0,5, наз. временем когерентности или продолжительностью гармонич. цуга. По истечении одного гармонич. цуга колебаний он как бы заменяется другим с той же частотой, но с другой фазой.

Хар-р и св-ва колебат. процесса существенно зависят от условий его возникновения. Напр., излучаемый газовым разрядом в виде узкой . линии, может быть близок к монохроматическому. Излучение такого источника складывается из волн, посылаемых разл. ч-цами независимо друг от друга и поэтому с независимыми фазами (спонтанное излучение). В результате амплитуда и фаза суммарной хаотически изменяются с характерным временем, равным времени К. Изменения амплитуды суммарной волны велики: от 0, когда исходные волны гасят друг друга, до макс. значения, когда соотношение фаз исходных волн благоприятствует их сложению. Колебания, возникающие в автоколебат. системе, напр. в ламповом или транзисторном генераторах, лазере, имеют др. структуру. В первых двух частота и фаза колебаний хаотически изменяются, но результирующая амплитуда поддерживается постоянной. В лазере все ч-цы излучают согласованно (вынужденное излучение), синфазно с колебанием, установившимся в резонаторе. Соотношения фаз слагающих колебаний всегда благоприятны для образования устойчивой амплитуды суммарного колебания. Термин «К.» иногда означает, что колебание порождено автоколебат. системой и имеет стабильную амплитуду.

При распространении плоской эл.-магн. волны в однородной среде фаза колебаний в к.-н. определ. точке пр-ва сохраняется только в течение времени К. t0. За это время волна распространяется на расстояние ct0. При этом колебания в точках, удалённых друг от друга на расстояние, большее ct0, вдоль направления распространения волны, оказываются некогерентными. Расстояние, равное ct0 вдоль направления распространения плоской волны, наз. длиной К. или длиной цуга.

Идеально неосуществима, как и идеально гармонич. колебание. В реальных волн. процессах амплитуда и фаза колебаний изменяются не только вдоль направления распространения волны, но и в плоскости, перпендикулярной этому направлению. Случайные изменения разности фаз в двух точках, расположенных в этой плоскости, увеличиваются с расстоянием между ними. К. колебаний в этих точках ослабевает и на нек-ром расстоянии l, когда случайные изменения разности фаз становятся сравнимыми с я, исчезает. Для описания когерентных св-в волны в плоскости, перпендикулярной направлению её распространения, применяют термины площадь К. и пространственная К., в отличие от временной К., связанной со степенью монохроматичности волны. Количественно пространств. К. также можно характеризовать ф-цией корреляции RI(l). Условие Rf(l)=0,5 определяет размер или радиус К., к-рый может зависеть от ориентации отрезка l в плоскости, перпендикулярной направлению распространения волны. Всё пр-во, занятое волной, можно разбить на области, в каждой из к-рых волна сохраняет К. Объём такой области (объём К.) принимают равным произведению длины цуга на площадь фигуры, ограниченной кривой RI(l)=0,5RI(0).

Нарушение пространств. К. связано с особенностями процессов излучения и формирования волн. Напр., нагретое тело излучает совокупность сферич. волн, распространяющихся по всем направлениям. По мере удаления от теплового источника конечных размеров волна приближается к плоской. На больших расстояниях от источника размер К. равен l,22lr/r, где r - расстояние до источника, r - размер источника. Для солн. света размер К. равен 30 мкм. С уменьшением утл. размера источника размер К. растёт. Это позволяет определить размер звёзд по размеру площади К. приходящего от них света. Величину l/r наз. углом К. С удалением от источника интенсивность света убывает пропорц. 1/r2. Поэтому с помощью нагретого тела нельзя получить интенсивное , обладающее большой пространств. К. Световая волна, излучаемая лазером, формируется в результате вынужденного излучения во всём объёме активного в-ва. Поэтому пространств. К. лазерного излучения сохраняется во всём поперечном сечении луча.

Понятие «К.», возникшее первоначально в классич. оптике как хар-ка, определяющая способность света к интерференции (см. ИНТЕРФЕРЕНЦИЯ СВЕТА), широко применяется при описании колебаний и волн любой природы. Благодаря квант. механике, распространившей волн. представления на все в микромире, понятие «К.» стало применяться к пучкам эл-нов, протонов, нейтронов и др. ч-ц. Здесь под К. понимают упорядоченные согласованные и направленные движения большого кол-ва квазинезависимых ч-ц. Понятие «К.» проникло также в теорию тв. тел (напр., гиперзвуковые фононы, (см. ГИПЕРЗВУК)) и квант. жидкостей. После открытия сверхтекучести жидкого гелия появилось понятие «К.», означающее, что макроскопич. кол-во атомов жидкого сверхтекучего гелия может быть описано единой волн. ф-цией, имеющей одно собств. значение, как будто это одна ч-ца, а не ансамбль огромного числа взаимодействующих ч-ц.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

(от лат. cohaerens -находящийся в связи) - коррелированное протекание во времени и в пространстве неск. случайных колебат. или волновых процессов, позволяющее получить при их сложении чёткую интерференц. картину. Первоначально понятие К. возникло в оптике, однако оно относится к волновым полям любой природы: эл.-магн. волнам произвольного диапазона, упругим волнам, волнам в плазме, квантовомеханич. волнам амплитуды вероятностей и т. д.

Существование интерференц. картины является прямым следствием суперпозиции принципа для линейных колебаний и волн. Однако в реальных условиях всегда существуют хаотич. волнового поля, в частности разности фаз взаимодействующих волн, что приводит к быстрому перемещению интерференц. картины в пространстве. Если через каждую точку за время измерения успевают многократно пройти максимумы и минимумы интерференц. картины, то зарегистрированное ср. значение интенсивности волны окажется в разл. точках одинаковым и интерференц. полосы расплывутся. Чтобы зарегистрировать чёткую интерференц. картину, необходима такая стабильность случайных фазовых соотношений, при к-рой смещение интерференц. полос за время измерения составляет лишь небольшую часть от их ширины. Поэтому качеств. понятие К. можно определить как необходимую стабильность случайных фазовых соотношений за время регистрации интерференц. картины.

Такое качеств. понятие К. в ряде случаев оказывается неудобным или недостаточным. Напр., при разл. способах регистрации интерференц. картины может оказаться, что необходимое для этого время различно, так что волна, когерентная по результатам одного эксперимента, некогерентна по результатам другого. В связи с этим удобно иметь количеств. меру степени когерентности, не зависящую от способа измерения интерференц. картины.

Если волновое описывается при помощи комплексной амплитуды , так что может быть, напр., аналитическим сигналом], то функция взаимной когерентности второго порядка Г 2 определяется как ср. значение:

Черта сверху обозначает статистич. усреднение по флуктуациям волнового поля, причём флуктуировать могут как фаза, так и амплитуда волны; * означает комплексное сопряжение. Случайная (мгновенная) интенсивность ( энергии) волны пропорц. величине . Её ср. значение связано с Г 2 ф-лой . Ср. вектор плотности потока энергии S также выражается через Г":

Для многокомпонентного (напр., эл.- магн.) поля скалярная ф-ция Г 2 заменяется тензором второго ранга. Если суммарное волновое поле в нек-рой точке является результатом сложения исходных полей

То его ср. интенсивность выражается через и 1 и и 2 ф-лой

Величину

наз. комплексной степенью когерентно с-т и полей в пространственно-временных точках

И . Из (3) следует, что

Чёткость интерференц. картины непосредственно связана с величиной . Если интенсивности интерферирующих пучков одинаковы (чего всегда можно добиться в эксперименте), т. е. , то на основании (2) можно записать

Если представить в виде , то = =. Обычно в пределах интерференц. картины изменяется гораздо слабее, чем соs j. В этом случае максимумы распределения соответствуют тем местам, где , а минимумы - значениям , тогда , , а для относит. контраста пн-терференц. картины (её "видности")

получаем

Т. о., " " интерференц. картины непосредственно выражается через степень когерентности, т. е. в конечном счёте через ф-цию Г 2 . Максимально чёткой интерференц. картине, в к-рой , соответствует значение . Полностью замытой интерференц. картине, в к-рой , соответствует

Величину можно непосредственно измерить при помощи соотношения (4), если предварительно обеспечить равенство ср. интенсивностей . Величина определяет смещение интерференц. полос.

Из определения следует, что степень когерентности максимальна при совмещении точек наблюдения: . Характерный масштаб спадания ф-ции попеременной наз. временем когерентности. Если при наложении волновых полей временной между ними мал по сравнению с , то может быть подучена чёткая интерференц. картина. В противоположном случае интерференция наблюдаться не будет. Величина также ограничивает время измерения интерференц. картины, о к-ром говорилось выше. Величина , где с - скорость распространения волны рассматриваемого типа, наз. продольным радиусом когерентности (длиной когерентности).

Если рассмотреть волновой пучок с чётко выделенным направлением распространения, то при разнесении точек наблюдения поперёк этого направления ф-ция также будет убывать. Характерный масштаб спада-ния в этом случае наз. поперечным радиусом когерентности r 0 . Эта величина характеризует размер тех участков волнового фронта, от к-рых может быть получена чёткая интерференц. картина. По мере распространения волны в однородной среде величина r 0 возрастает за счёт дифракции (см. Ван-Циттерта-Цернике теорема). Произведение характеризует объём когерентности, в пределах к-рого случайная фаза волны меняется на величину, не превосходящую

К. волновых полей можно исследовать и косвенным путём, изучая корреляцию флуктуации мгновенной интенсивности I . При этом время измерения должно быть малым по сравнению с , а поперечный размер детектора - малым по сравнению с r 0 . Корреляц. ф-цию флуктуации интенсивности -

Можно найти, если наряду с Г 2 известна и ф-ция К. четвёртого порядка:

Если u(r, t )является гауссовым (напр., создаётся тепловым источником), причём (но, разумеется, ), то Г 4 можно выразить через Г 2 по ф-лам, справедливым для гауссовых случайных полей:

Поэтому для гауссовых волновых полей измерения величины B I могут дать сведения о модуле степени К. (см. Интерферометр интенсивности). В общем случае измерений интенсивности волнового поля в п точках для описания результатов опыта достаточно знать ф-цию К. порядка 2п:

Эти же ф-ции описывают результаты экспериментов по статистике фотоотсчётов, когда измеряются корреляции чисел фотонов, зарегистрированных в разл. точках r 1 , . . ., r п.

Квантовые могут существенно исказить результаты интерференц. опыта, если полное число фотонов, зарегистрированных в максимуме интерференц. картины, невелико. Т. к. при осуществлении интерференц. опыта можно собрать излучение с площади, имеющей порядок величины , и проводить измерения в течение времени , то при этом будут использованы все фотоны из объёма , т. е. из объёма коге-рентпости. Если ср. число N фотонов в объёме К., называемое параметром вырождения, велико, то квантовые флуктуации числа зарегистрированных фотонов относительно невелики () и не оказывают существ, влияния на результат измерений. Если же N невелико, то эти флуктуации будут препятствовать измерениям.

Термин "К." употребляется и в более широком смысле. Так, в квантовой механике , для к-рых реализуется минимум в неопределённостей соотношении, наз. когерентными состояниями. В разл. областях физики термин "К." применяется для описания корре-лиров. поведения большого числа частиц (как это имеет место, напр., при сверхтекучести). Термин "когерентные структуры" в разл. областях науки применяется для обозначения спонтанно возникающих устойчивых образований, сохраняющих нек-рые закономерные свойства на фоне хаотич. флуктуации.

Лит.: Вольф Э., Мандель Л., Когерентные свойства оптических полей, пер. с англ., "УФН", 1965, т. 87, с. 491; 1966, т. 88, с. 347, 619; О" Н е и л Э., Введение в статистическую оптику, пер. с англ., М., 1966; Борн М., Вольф Э. Основы оптики, пер. сангл., 2 изд., М., 1973; Клаудер Д ж. Сударшан Э., Основы квантовой оптики, пер. с англ. М., 1970; Перина Я., Когерентность света, пер. с англ. М., 1974. В. И. Татарский

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :