Способность организма адаптироваться к изменяющимся условиям окружающей среды как фактор сохранения здоровья. Экологические факторы среды Что будем делать с полученным материалом

«Жизнедеятельность организмов» - Дыхание. Обмен веществ и энергии – характерный признак живого. Различают наружный и внутренний скелеты. Вода. С яйцеклеткой соединяется только один сперматозоид. В основе работы эндокринной системы лежит действие химических веществ - гормонов. Координация и регуляция. Холоднокровные. Рост и развитие растений.

«Развитие творческих способностей» - Не торопитесь находить произведение чисел. Провокация ошибки. Использование «Математического героя». Например, из чисел 12, 42, 51 и 69 составить несократимую дробь. «Игра с числами». Содержание: Магический квадрат. Два следующих раздела не отражены в данной презентации в связи с регламентом педсовета.

«Организм человека» - Железо. О том, в каких процессах участвует кремний в живых системах, известно мало. Медь. С возрастом концентрация кремния в клетках падает. Фтор. Неметаллы как микроэлементы. Значительная часть меди находится в форме церулоплазмина. При приёме внутрь селен концентрируется в печени и почках. Кремний нужен для роста и развития скелета.

«Развитие интеллектуальных способностей» - Возможность дальнейшего развития проекта: Наличие проблемы: Мобилизующий этап урока. Познакомиться с музыкой и театром … … Возникновение публичных театров. Включение учащихся в учебный процесс с первой минуты урока. Рассмотрите рассыпанные буквы. Формирование знаний, умений по предмету. Развитие важнейших интеллектуальных качеств с помощью упражнений.

«Индивидуальное развитие организма» - Данные эмбриологии используют для воссоздания хода филогенеза. Первый спермий сливаясь с яйцеклеткой образует зиготу, из которой развивается зародыш. Внутреннее оплодотворение. Стадия дробления. Стадия бластулы. Стадии гаструлы и нейрулы. Учитель отвечает на вопросы учеников. Дайте определения. А – гаструлу Б – бластулу В – нейрулу Г - органогенеза.

Биологический регресс - это эволюционное движение, при котором происходит сокращение ареала обитания; уменьшение численности особей из-за неприспособленности к среде обитания; снижение числа видов групп из-за давления других видов, исчезновение вида. Наука палеонтология доказала, что многие виды в прошлом полностью исчезли. Если при биологическом прогрессе некоторые виды развиваются и широко распространяются по всему земному шару, то при биологическом регрессе виды исчезают, не сумев приспособиться к условиям окружающей среды.

Причины биологического регресса: исчезновение способности организмов приспосабливаться к изменениям условий окружающей среды.

Биологическому регрессу подвержены:

2. Животные, ведущие неподвижный образ жизни.

3. Животные, живущие под землей или в пещерах.

2. Примеры дегенерации у организмов, ведущих неподвижный образ жизни.

У животных, ведущих неподвижный образ жизни, орган движения действует только в период личиночной стадии, хорда редуцирована. Например, единственный представитель отдельного типа брахиата - погонофора - обитает на дне моря, ведет неподвижный образ жизни. В 1949 г. ученый-зоолог А. В. Иванов впервые нашел ее в Охотском море на глубине 4 км, она попала в сети вместе с рыбами. Удлиненное червеобразное тело животного покрывает трубка цилиндрической формы. В передней части тела имеются щупальца, которые периодически выходят из трубки наружу для дыхания. Тело состоит из трех отделов, в переднем отделе имеются щупальца (у некоторых видов их до 200-250), мозг, сердце, органы выделения. Второй отдел более крупный, третий - очень длинный. Во внутренней части отделов находятся органы дыхания, во внешней части - выросты, прикрепленные к трубке (рис. 34).

Рис. 34. Погонофора: 1-шупальца; 2- голова; 3-первый отдел тела; 4-второй отдел тела; 5-третий отдел тела; 6-чувствительные волоски; 7-задняя часть тела

У погонофоры имеются мозг и сердце, но рот и желудок редуцированы, органами дыхания являются щупальца. Из-за неподвижного образа жизни они не похожи на животных. Во внутренней части щупалец имеются длинные тонкие волоски, которые снабжены кровеносными сосудами. В воде волоски выходят из трубки, и к ним прикрепляются микроорганизмы. Когда их становится много, погонофоры затягивают волоски внутрь. Под влиянием ферментов мелкие организмы перевариваются и впитываются внутренними выростами.

Зачаточный кишечник у зародыша погонофоры доказывает наличие органов пищеварения у предков. Из-за прохождения процесса пищеварения вне организма органы пищеварения погонофор редуцировались.

Строение асцидии также упрощено в процессе эволюции из-за неподвижного образа жизни. Асцидия относится к одной из ветвей типа хордовых - оболочникам, обитающим в море (рис. 35).

Рис. 35. Асцидии

Мешковидное тело асцидии покрыто оболочкой, подошвой она прикреплена ко дну моря и ведет неподвижный образ жизни. В верхней части тела имеютсю два отверстия, через первое отверстие вода проходит в желудок, a из второго - выходит наружу. Органы дыхания - жаберные щели. Размножается откладыванием яиц. Из яйца развиваются подвижные похожие на головастиков, личинки с признаками хорды. Во взрослом состоянии асцидия прикрепляется ко дну моря, тело упрощается. Считается, что асцидия - сильно деградированное хордовое животное.

3. Примеры дегенерации животных, живущих под землей или в пещерах.

В пещерах бывшей Югославии и Южной Австрии обитает протей из класса
земноводных, похожий на тритона (рис. 36).

Рис. 36. Протей

Кроме легких по обе стороны головы у него имеются внешние жабры. В воде протеи дышат жабрами, на суше - легкими. Обитатели вод и глубоких пещер, они имеют змеевидную форму, прозрачны, бесцветны, без пигментов. У взрослых особей глаза прикрывает кожа, а у личинок имеются зачаточные глаза. Таким образом, у предков асцидии были глаза, и они вели наземный образ жизни. У пещерных организмов исчезли органы зрения, пигменты, снизилась активность.

У цветковых растений, перешедших в водную среду, листовые пластинки стали узкими, нитевидными, проводящие ткани перестали развиваться. Исчезли устьица, не изменились только цветы (лютик водяной, ряска, роголистник).

Генетической основой эволюционных изменений, ведущих к упрощению уровня организации, является мутация. Например, если сохранившиеся недоразвитые органы - рудименты, альбинизм (отсутствие пигментов) и другие мутации - не исчезают в процессе эволюции, то встречаются они у всех членов данной популяции.

Таким образом, выделяют три направления в эволюции органического мира. Ароморфоз - повышение уровня организации живых организмов; идиоадаптация - приспособление живых организмов к условиям окружающей среды без принципиальной перестройки их биологической организации; дегенерация - упрощение уровня организации живых организмов, ведущее к биологическому регрессу.

Взаимосвязь между направлениями биологической эволюции. Связь между ароморфозом, идиоадаптацией и дегенерацией в эволюции органического мира неодинакова. Ароморфоз по сравнению с идиоадаптацией происходит реже, но именно он знаменует новый этап в развитии органического мира. Ароморфоз приводит к возникновению новых высокоорганизованных систематических групп, которые занимают другую среду обитания и приспосабливаются к условиям существования. Даже эволюция идет по пути идиоадаптации, иногда и дегенерации, которые обеспечивают организмам обживание новой для них среды обитания.

Биологический регресс

Биологический регресс - уменьшение численности вида, сужение ареала, снижение уровня приспособленности к условиям среды.

1.Чем отличается биологический регресс от биологического прогресса?

2. Сколько путей имеет дегенерация?

3. Приведите примеры дегенерации у животных.

4. Каковы примеры дегенерации у растений?

Как вы объясните причины исчезновения корня и листьев у повилики?

Чем и как питается повилика? Образует ли она органическое вещество?

1. Объясните причины превращения листьев заразихи в чешую.

2. Разберите примеры дегенерации погонофор, ведущих неподвижной образ жизни.

3. Как переваривается пища у погонофор, если у них нет органа пищеварения?

4. Какие вы знаете организмы, ведущие неподвижный образ жизни? Опишите их.

Где обитает протей? Объясните на примерах дегенерации. Приведите примеры дегенерации у растений, живущих в водной среде. Напишите краткий реферат об ароморфозе, идиоадаптации, дегенерации.

Уровни приспособления организма к изменяющимся условиям. Каким образом организмы приспосабливаются к условиям окружающей среды? Существует несколько уровней, на которых протекает этот процесс. Клеточный уровень - один из важнейших.

Рассмотрим в качестве примера, как приспосабливается к условиям среды одноклеточный организм - кишечная палочка. Известно, что она хорошо растет и размножается в среде, содержащей единственный сахар - глюкозу. При обитании в такой среде ее клеткам не нужны ферменты, необходимые для превращения другого сахара, например лактозы, в глюкозу. Но если бактерии выращивать в среде, содержащей лактозу, то в клетках сразу начинается интенсивный синтез ферментов, превращающих лактозу в глюкозу (вспомните § 17). Следовательно, кишечная палочка способна перестраивать свою жизнедеятельность так, чтобы приспособиться к новым условиям среды. Приведенный пример относится и ко всем другим клеткам, включая клетки высших организмов.

Другой уровень, на котором происходит приспособление организмов к условиям окружающей среды, - тканевый. Тренировка приводит к развитию тканей и органов: у тяжелоатлетов - мощная мускулатура; у людей, занимающихся подводным погружением, сильно развиты легкие; у отличных стрелков и охотников - особая острота зрения. Многие качества организма могут быть развиты в значительной мере тренировкой. При некоторых заболеваниях, когда особенно большая нагрузка приходится на печень, наблюдается резкое увеличение ее размеров. Таким образом, отдельные органы и ткани способны отвечать на изменение условий существования.

Саморегуляция. Организм представляет собой сложную систему, способную к саморегуляции. Саморегуляция позволяет организму эффективно приспосабливаться к изменениям окружающей среды. Способность к саморегуляции в сильной степени выражена у высших позвоночных, особенно у млекопитающих. Достигается это благодаря мощному развитию нервной, кровеносной, иммунной, эндокринной и пищеварительной систем.

Изменение условий с неизбежностью влечет за собой перестройку их работы. Например, нехватка кислорода в воздухе приводит к интенсификации работы кровеносной системы, учащается пульс, возрастает количество гемоглобина в крови. В результате организм приспосабливается к изменившимся условиям.

Постоянство внутренней среды при систематически меняющихся окружающих условиях создается совместной деятельностью всех систем организма. У высших животных это выражается в поддержании постоянной температуры тела, в постоянстве химического, ионного и газового состава, давления крови, частоты дыхания и сердечных сокращений, постоянном синтезе нужных веществ и разрушении вредных.

Поддержание относительного постоянства внутренней среды организма называют гомеостазом. Гомеостаз - важнейшее свойство целостного организма.

Обмен веществ - обязательное условие и способ поддержания стабильности организации живого. Без обмена веществ невозможно существование живого организма. Обмен веществ и энергии между организмом и внешней средой - неотъемлемое свойство живого.

Особую роль в поддержании постоянства внутренней среды играет иммунная (защитная) система. Русский ученый И. И. Мечников был одним из первых биологов, доказавших ее огромную важность. Клетки иммунной системы синтезируют специальные белки - антитела, которые обнаруживают и уничтожают все чужое для данного организма.

Влияние внешних условий на раннее развитие организмов. Способность к саморегуляции и к противостоянию вредным влияниям среды возникает у организмов не сразу. В течение эмбрионального и постэмбрионального развития, когда многие защитные системы еще не сформировались, организмы особенно уязвимы для действия повреждающих факторов. Поэтому и у животных и у растений зародыш защищен специальными оболочками или самим материнским организмом. Он либо снабжен специальной питающей тканью, либо получает питательные вещества непосредственно от материнского организма. Тем не менее изменение внешних условий может ускорить развитие эмбриона или затормозить его и даже вызвать возникновение различных нарушений.

Вредное влияние на развитие эмбриона человека оказывает употребление его родителями алкоголя, наркотиков, курение табака. Алкоголь и никотин угнетают клеточное дыхание. Недостаточное снабжение кислородом приводит к тому, что в формирующихся органах образуется меньшее количество клеток, органы оказываются недоразвитыми. Особенно чувствительна к недостатку кислорода нервная ткань. Употребление будущей матерью алкоголя, наркотиков, курение табака, злоупотребление лекарствами часто приводят к необратимому повреждению эмбриона и последующему рождению детей с умственной отсталостью или врожденными уродствами. Не меньшую опасность для развития зародыша представляет загрязнение среды обитания различными химическими веществами или облучение ионизирующей радиацией.

В течение постэмбрионального периода развивающиеся организмы также очень чувствительны к вредным воздействиям внешней среды. Это объясняется тем, что формирование систем поддержания гомеостаза продолжается и после рождения. Поэтому алкоголь, никотин, наркотики, являющиеся ядами и для взрослого организма, особенно опасны для детей. Эти вещества тормозят рост и развитие всего организма, а особенно головного мозга, что приводит к умственной отсталости, тяжелым заболеваниям и даже смерти.

Биологические часы. Далеко не всегда организмы жестко поддерживают характеристики внутренней среды на одном и том же уровне. Часто внешние изменения влекут за собой перестройку внутренней среды. Пример того - изменение физиологического состояния организмов в зависимости от изменений длины дня в течение года, или, как говорят, изменений фотопериодических условий.

У многих животных и растений, обитающих в умеренном климате, сезон размножения совпадает с увеличением длины светового дня. Изменение фотопериодических условий в данном случае - ведущий фактор. Сезонные ритмы наиболее ярко проявляются в смене покровов у деревьев лиственных лесов, смене оперения птиц и волосяного покрова млекопитающих, в периодических остановках и возобновлении роста растений и т. д.

Изучение явлений суточной, сезонной и лунной периодичности живых организмов показало, что все эукариоты (одноклеточные и многоклеточные) обладают так называемыми биологическими часами. Другими словами, организмы обладают способностью измерять суточные, лунные и сезонные циклы.

Известно, что приливно-отливные течения в океане вызываются влиянием Луны. В течение лунных суток вода поднимается (и отступает) либо дважды, либо один раз, в зависимости от района Земли. Морские животные, обитающие в таких периодически меняющихся условиях, способны измерять время приливов и отливов с помощью биологических часов. Двигательная активность, потребление кислорода и многие физиологические процессы у крабов, актиний, раков-отшельников и других обитателей прибрежных участков морей закономерно изменяются в течение лунных суток.

Ход биологических часов может перестраиваться в зависимости от изменившихся условий. Примером такого процесса является изменение ритмов многих физиологических функций: температуры тела, давления крови, фазы двигательной активности и покоя у человека, совершившего перелет из Москвы на Камчатку, где Солнце встает на 9 ч раньше. При быстром перелете на дальние расстояния перестройка биологических часов происходит не сразу, а в течение нескольких дней.

Суточные ритмы жизнедеятельности многих организмов определяются чередованием света и темноты: началом рассвета или сумерек. Скворцы за час до захода Солнца собираются в стаи в течение 10-30 мин и улетают в места ночевки за десятки километров. Они никогда не опаздывают благодаря своим биологическим часам, которые подстраиваются под Солнце. В целом суточная периодичность складывается в результате координации многих ритмов, как внутренних, так и внешних.

В ряде случаев причина периодических колебаний внутренней среды заключена в самом организме. Эксперименты над животными показали, что в условиях абсолютной темноты и звуковой изоляции периоды отдыха и бодрствования последовательно чередуются, укладываясь в промежуток времени, близкий к 24 ч.

Итак, колебания характеристик внутренней среды организма можно рассматривать как один из факторов, поддерживающих ее постоянство.

Анабиоз. Часто организмы попадают в такие условия среды, в которых продолжение нормальных жизненных процессов невозможно. В подобных случаях некоторые организмы могут впадать в анабиоз (от греч. «ана» - вновь, «биос» - жизнь), т. е. состояние, характеризующееся резким снижением или даже временным прекращением обмена веществ. Анабиоз является важным приспособлением многих видов живых существ к неблагоприятным условиям обитания. Споры микроорганизмов, семена растений, яйца животных - примеры анабиотического состояния. В отдельных случаях анабиоз может продолжаться сотни и даже тысячи лет, по прошествии которых семена не теряют всхожести. Глубокое замораживание спермы и яиц особо ценных сельскохозяйственных животных для их длительного хранения и последующего широкого употребления - пример использования анабиоза в практической деятельности людей.

  1. Приведите примеры, подтверждающие приспособленность организмов к условиям среды на клеточном и тканевом уровнях.
  2. Почему алкоголь, никотин, наркотики особенно вредны для эмбриона?
  3. Как вы считаете, можно ли способность организмов измерять время и впадать в состояние анабиоза рассматривать как примеры саморегуляции? Ответ обоснуйте.
  4. Как, по-вашему, можно использовать знания о биологических часах и анабиозе в практической деятельности?

Широкий диапазон толерантности вида по отношению к экологическим факторам обозначают добавлением к названию фактора приставки «эври-» (от греч. eurys – широкий), а низкая экологическая валентность вида характеризуется приставкой «стено-» (от греч. stenos – узкий). Так, например, животные, способные выносить значительные колебания температуры, называются эвритермными , а в случае их неспособности к этому они называются стенотермными . Небольшие изменения температуры мало сказываются на эвритермных организмах, но могут оказаться гибельными для стенотермных. Экологически непластичные, т.е. маловыносливые виды, для существования которых необходимы строго определенные экологические условия, называют стенобиотными , а более выносливые виды, приспосабливающиеся к экологической обстановке с широким диапазоном изменения параметров, - эврибиотными .

Способность организма приспосабливаться к действию экологических факторов и выживать в изменяющихся условиях среды за счет эволюционно возникших морфологических, физиолого-биохимических и поведенческих приспособлений называется адаптацией (от лат. adaptatio – приспособление).

Разные организмы характеризуются разной экологической валентностью, но диапазон толерантности организма может меняться даже при переходе из одной стадии развития в другую – например, молодые организмы часто оказываются более уязвимыми и более требовательными к условиям среды, чем взрослые особи.

Любой организм одновременно испытывает воздействие целого комплекса экологических факторов, связанных между собой и влияющих друг на друга, в связи с чем границы диапазона толерантности организма по отношению к какому-либо фактору среды могут смещаться в зависимости от того, в каком сочетании действуют другие факторы (например, жару и холод легче переносить при сухом, а не влажном воздухе). В результате взаимодействия экологических факторов может происходить их частичная компенсация, однако полностью заменить один из факторов другим нельзя, несмотря на самые благоприятные сочетания других условий.

Если все условия среды обитания благоприятны, за исключением какого-то одного экологического фактора, то именно он становится решающим для жизни конкретных организмов (популяций), ограничивая (лимитируя) их развитие, в связи с чем его называют лимитирующим фактором . Еще в середине XIX века немецкий химик-органик Ю. Либих экспериментально доказал, что развитие живых организмов ограничивает недостаток какого-либо компонента (например, минеральных солей, влаги, света и т.п.) и назвал это явление законом минимума . Однако, как позже выяснил американский зоолог В.Шелфорд, сформулировавший закон толерантности , лимитирующим может быть не только недостаток (минимум), но и избыток (максимум) экологического фактора, диапазон между которыми определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору.

Каждый вид организмов возник в определенной среде, в той или иной степени приспособился к ее колебаниям и изменениям и дальнейшее существование вида возможно лишь в данной или близкой к ней среде, соответствующей его генетическим возможностям адаптации. Резкое и быстрое изменение экологических факторов может привести к тому, что генетические возможности вида окажутся недостаточными для приспособления к новым условиям, из-за чего коренные преобразования природы человеком могут быть опасны для многих видов живых организмов, в том числе и для него самого.

Разные организмы характеризуются разной величиной толерантности.

Экологические, факторы связаны между собой и влияют друг на друга.

Вывод: существует экологическое равновесие между живыми организмами и средой их обитания:

Один из основных факторов в экологии – химический фактор .

Экологическая химия – новый раздел химии, в котором рассматриваются химический состав и взаимодействия между основными компонентами и загрязнителями неорганического и органического происхождения в атмосфере, гидросфере, литосфере и их влияние на среду обитания и биосферу в целом.

Система – совокупность элементов (веществ, тел, объектов живой и неживой природы) со связями между ними, мысленно или реально выделенных из окружающего пространства.

Различают химические системы, физические системы, биологические (живые) системы, экологические системы и другие.

Биологическая система – это упорядоченная совокупность взаимозависимых живых компонентов, динамически взаимодействующих с неживой средой. Выделяют следующие основные уровни организации биологических систем: молекулярный (генный), клеточный, органный, организменный, популяционно-видовой и экосистемный.

Иерархическая организация биосистем, более простые из которых входят в состав более сложно организованных, проявляется в эмерджентности (от англ. emergent – внезапно возникающий), когда по мере объединения в более крупные системы следующего уровня, у них возникают качественно новые свойства, отсутствовавшие на предыдущем.

Экологическая система (экосистема) – система, в которой организмы и среда их обитания объединены в единое функциональное целое через обмен веществ и энергии; любая совокупность организмов и окружающей их среды. Экосистема – основная функциональная единица в экологии.

Более конкретно,экосистема – это сообщество живых организмов - биоценоз (от греч. bios – жизнь и koinos – общий) и его среда обитания – биотоп (от греч.topos - место), объединенные в единое функциональное целое. Обмен веществом, энергией и информацией связывает биотические и абиотические компоненты экосистемы таким образом, что она сохраняет устойчивость в течение продолжительного времени.

К термину «экосистема », предложенному в 1935 г. английским биологом А. Тенсли для определения основной функциональной единицы живой природы, очень близок термин «биогеоценоз », который предложил в 1940 г. В.Н.Сукачев, и который в большей степени отражает структурные характеристики географического пространства, на котором развивается биоценоз.

Химическая система – совокупность веществ, между которыми происходят химические реакции с образованием новых веществ – продуктов реакции.

Физическая система – совокупность тел (веществ), между которыми не происходит химических взаимодействий; система, характеризуемая отсутствием химических реакций.

Кибернетическая система – система, способная воспринимать, хранить и перерабатывать информацию, а также обмениваться ею с другими системами.

Общая экология изучает биологические системы начиная с организменного уровня и в зависимости от размерности этих систем в ней выделяют следующие разделы: аутэкология (уровень отдельных организмов), демэкология (уровень популяций) и синэкология (уровень экосистем).

Популяция - это совокупность организмов одного вида, обменивающихся генетической информацией и населяющих определенное ограниченное пространство в течение многих поколений. Популяция характеризуется рядом признаков, присущих группе в целом, а не отдельным ее особям: численностью, плотностью, рождаемостью, смертностью, возрастной структурой, распределением в пространстве, биотическим потенциалом и т.д.

Численность – число особей в популяции, которое зависит от биологического потенциала вида и внешних условий и может значительно изменяться во времени.

Плотность – число особей, приходящееся на единицу площади или объема. Оптимальная плотность – это такой уровень плотности, при котором совмещается рациональное использование территории и осуществление внутрипопуляционных функций. Поддержание оптимальной плотности - сложный процесс биологического регулирования, основанный на принципе обратной связи.

Половая структура популяции – соотношение особей женского и мужского пола в популяции, тесно связанное с ее генетической и возрастной структурой.

Возрастная структура популяции – соотношение в популяции особей разных возрастных групп. Темпы роста популяции определяются долей половозрелых особей в ней. Если процент неполовозрелых высок – это говорит о потенциальном увеличении численности популяции.

Генетическая структура популяции – соотношение в популяциях различных генов. Она отражает богатство генофонда популяции (совокупность генов всех особей популяции), который определяет общие видовые свойства, а так же особенности, возникшие в порядке приспособления популяции к определенным условиям среды.

Пространственная структура популяции – это распределение особей в пределах ареала, зависящее от особенностей организмов и среды их обитания. Оно может быть равномерным (характеризуется равным удалением особей друг от друга), диффузным (особи распределяются по территории случайно) или мозаичным (особи распределяются группировками, на определенном расстоянии друг от друга).

Рождаемость – число новых особей, появившихся в популяции за единицу времени в результате размножения.

Смертность – число особей, погибших в популяции за единицу времени от всех причин.

Скорость роста популяции – изменение численности популяции в единицу времени. При отсутствии лимитирующих факторов среды удельная скорость роста (отношение скорости роста популяции к исходной численности) называется биотическим потенциалом . В природе под действием лимитирующих факторов, представляющих собой так называемое сопротивление среды , биотический потенциал никогда не реализуется полностью, составляя разницу между рождаемостью и смертностью в популяции.

Конец работы -

Эта тема принадлежит разделу:

Экология

Санкт петербургский государственный политехнический университет.. л н блинов н н ролле..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Экология
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения Санкт-Петербург

Кривые выживания
Кривая 1 свойственна организмам, смертность которых в течении жизни мала, но резк

Схемы различных по открытости систем
Пример: Химическая система 1. Открытая 2. Замкнутая 3. Изолированная

Биоценоз, биотоп, биогеоценоз, окружающая среда
Живые организмы делят на три группы: растения, животные и микроорганизмы. Все растения, животные и микроорганизмы связаны между собой и не могут существовать друг без друга. Совок

Структура биогеоценоза
Несмотря на многообразие экосистем, все они обладают структурнымсходством. В кажд

Атомные и молекулярные частицы
Атомные частицы – частицы, состоящие из одного атома. Каждая атомная частица представляет собой систему взаимодействующих элементарных и фундаментальных частиц, состоящую из ядра и

Атмосфера
Атмосфера – газообразная (газовая) оболочка планет. Атмосфера Земли состоит из смеси газов, водяных паров и мелких частиц твердых веществ. Основа атмосферы – воздух

Особенности химических процессов в атмосфере
1. Большинство химических реакций инициируются не термически, а фотохимически, т.е. при воздействии квантов света, полученных в результате излучения Солнца. 2. Атмосфера Земли – окислитель

Гидросфера
Гидросфера– водная оболочка Земли, совокупность океанов, морей, водных объектов суши (реки, озера, болота водохранилища), подземных вод, включая запасы воды в твердой фазе (ледники

Природная вода
Природная вода– это раствор многих веществ, в том числе солей, газов, а также веществ органического происхождения, некоторые из них находятся во взвешенном состоянии. В большинстве

Качество природной воды
Показатели качества природной воды обычно подразделяют на физические (температура, цветность, взвешенные вещества, запах, вкус и др.), химические (жесткость, активная реакция, окисляе

Особенности химических процессов в гидросфере
К особенностям химических процессов в гидросфере можно отнести: 1. Многообразие форм химических соединений: присутствуют все классы органических и неорганических веществ;

Основной элементный состав земной коры
Элемент Содержание, мас.% Кислород 49,13 Кремний 26,00 Алюми

Некоторые особенности биосферы
1. Биосфера – закономерный продут эволюции планеты Земля. 2. Биосфера Земли – большая (глобальная) открытая система, у которой на входе – поток солнечного излучения, а на выходе – минералы

Средний элементный химический состав живого вещества суши
Элемент Содержание, % от живой массы Элемент Содержание, % от живой массы O M

Накопление живым веществом
Элемент Концентрируется при фотосинтезе, т Мировые запасы сырья, т Элемент Концентрируется при фотосинтезе, т

Основные функции живого вещества в биосфере
Функции Краткая характеристика процессов Энергетическая Поглощение солнечной энергии при фотосинтезе, химической энергии

Взаимодействие веществ в оболочках планеты
Рассмотрим взаимодействие между оболочками планеты на примере атмосферы.

Природные ресурсы
Природные (естественные) ресурсы – важнейшие компоненты окружающей среды, которые используют для создания материальных и культурных потребностей общества. К природным ресу

Виды минерального сырья и их запасы
Виды сырья Запасы минерального сырья начало 1981 г. начало 2000г. Уголь, млн. т

Загрязнение и загрязнители окружающей среды
Загрязнение – превышение в окружающей среде многолетнего уровня физических, химических, биологических агентов или привнесение в окружающую среду (или возникновение в ней) не характ


За год на планете: ~ 100 тысяч гроз, 10 тысяч наводнений, около 100 тысяч пожаров, землетрясений, ураганов, оползней, несколько сотен извержений вулканов. За 1 сильное землетрясение из нед

Некоторых соединений
SO2 – сжигание угля, нефтепродуктов H2S – химические производства, очистка сточных вод CO – автотранспорт CO2 – различные процессы сжиган

Токсичность
Токсичность – свойство веществ вызывать отравление организма. Характеризуется дозой (концентрацией) вещества, вызывающей ту или иную степень отравления. Различают токсическую

Пищевые добавки
Большинство экологических проблем порождается людьми, их образом жизни в локальной среде обитания, которая в большинстве случаев является городской. В течение двух последних столетий произошли глоб

Органические соединения и пищевые добавки
Состояние пищевых добавок в продуктах: – полностью в неизменном вид

Экономические аспекты природопользования
Человечество развивало экономику преимущественно за счет хищнического использования природных ресурсов, игнорируя законы биосферы. В настоящее время осознание необходимости адаптации экономического

Экология и кибернетика
Сейчас все чаще для анализа ситуаций и процессов в одной области знаний привлекают модели и методы из других областей знаний, в частности из кибернетики. Причины: 1. Во многих нау

Различного уровня
Химическая система (Al + раствор Na2S) Изменением начального состояния м

Полезные мысли и высказывания
Ни один вид не может существовать в созданных им отходах. В.И.Вернадский У природы есть предел терпения. Когда людские злодеяния превышают меру, она начи

Основные документы экологического законодательства РФ
Конституция Российской Федерации; Федеральный закон «Об охране окружающей среды»; Земельный кодекс РСФСР; Лесной кодекс РФ; Водный кодекс РФ; Федеральны

Некоторых тяжелых металлов в воздухе
Элемент Вещество ПДК рз, мг/м3 ПДК сс, мг/м3 Свинец

Данные по ПДК некоторых веществ в водоемах
для общественного и бытового использования в странах СНГ, мг/л Вещество ПДК Вещество ПДК

По ПДК для некоторых металлов в питьевой воде
Металлы Рекомендации ВОЗ по безвредной для человека концентрации веществ в питьевой воде Допустимые поступления химических веществ в организм ч

Снабжения в различных странах
Вещества-загрязнители Норма РФ Рекомендации ВОЗ ФРГ Польша Чехия и Словакия

Некоторых химических веществ в почве
Вещество ПДК, мг/кг, почвы с учетом фона (кларка) Лимитирующий показатель Подвижные формы Кобальт

Среда обитания ─ это часть природы, которая окружает живой организм и с которой он взаимодействует. Любой живой организм живет в сложном и изменяющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с этими изменениями. Элементы и свойства среды обитания организма динамичны и многообразны. Например , одни вещества организму крайне необходимы для жизнедеятельности, к другим он безразличен , а третьи могут оказывать на него даже вредное воздействие.

Способность живых организмов приспосабливаться к окружающей среде обитания называется адаптацией. Адаптация организма к окружающей среде ─ одна из основных свойств жизни, так как этим обеспечивается возможность существования, выживания и размножения организмов.

Наряду с питанием, движением и размножением обязательным свойством любых организмов является их способность к защите от воздействия неблагоприятных факторов окружающей среды, независимо от их природы (абиотической или биотической).

Экологические факторы окружающей среды могут выступать как:

1) раздражители (которые обеспечивают в организме приспособительные изменения физиологических и биохимических функций);

2) ограничители (вызывают невозможность существования организма в данных условиях);

3) модификаторы (способствуют анатомическим и морфологическим изменениям организма);

4) сигналы (свидетельствующие об изменениях других факторов среды).

В процессе приспособления к неблагоприятным условиям окружающей среды организмы сумели выработать следующие пути их избегания.

Активный путь – путь, способствующий усилению сопротивляемости и развитию регуляторных процессов, которые позволяют осуществить все жизненные функции организма, несмотря на неблагоприятные внешние факторы. Так, например, теплокровные – млекопитающиеся и птицы, обитая в условиях изменчивой температуры, поддерживают внутри себя постоянную температуру, которая оптимальна для прохождения в клетках организма биохимических процессов. Такое активное сопротивление влиянию окружающей внешней среды требует больших энергетических затрат, которые необходимо постоянно восполнять, а также специальных приспособлений во внешнем и внутреннем строении организма.

Пассивный путьтесно связан с подчинением жизненных функций организма к изменению факторов внешней среды. Так, например, недостаток тепла в организме приводит к угнетению жизнедеятельности и понижению уровня метаболизма, это позволяет обеспечивать экономное расходование энергетических запасов. При резком ухудшении условий среды организмы разных видов могут приостанавливать свою жизнедеятельность и переходить в состояние так называемой скрытой жизни. Некоторые мелкие организмы могут полностью высыхать на воздухе, а затем возвращаться к активной жизни после пребывания в воде. Такое состояние мнимой смерти называется анабиозом. Переход в состояние глубокого анабиоза, при котором практически полностью останавливается обмен веществ, существенно расширяет возможности выживания организмов в самых экстремальных условиях. Например, высушенные семена и споры многих растений после увлажнении дают всходы даже через несколько лет. Это относится и к мелким животным. Например, коловратки и нематоды способны в состоянии анабиоза переносить температуры до минус 2000С. Примерами скрытой жизни являются оцепенение насекомых, зимний покой многолетних растений, спячка позвоночных животных, сохранение семян, и спор в почве, и мелких организмов в пересыхающих водоёмах. Некоторые бактерии и вирусы, в том числе болезнетворные, могут находиться в неактивном состоянии сколь угодно долго, пока не возникнут благоприятные условия для их «пробуждения» и последующего активного размножения. Такое явление, при котором имеет место временный физиологический покой в индивидуальном развитии некоторых животных, растений, вызванный неблагоприятными факторами внешней среды, называется диапаузой.

Избегание неблагоприятных воздействий – это выработка организмом таких жизненных циклов, при которых наиболее уязвимые стадии его развития завершаются в самые благоприятные по температурным и другим условиям периода года. Общий для животных путь приспособления к неблагоприятным периодам – это миграция . Так, например, в Казахстане степные сайгаки уходят ежегодно на зиму в малоснежные южные полупустыни, где зимние травы в связи с сухостью климата более питательные и доступные. Летом травостой полупустынь быстро высыхает из-за сухости климата, в связи с этим сайгаки на время размножения мигрируют в более влажные северные местности. Наиболее часто адаптация вида к среде осуществляется определённым сочетанием всех трёх возможных путей их приспособления.

Живые организмы в ходе длительной эволюции выработали разнообразные приспособления (адаптации), которые позволяют регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается: а) различными биохимическими и физиологическими перестройками в организме, к которым относятся изменение концентрации и активности ферментов, обезвоживание, понижение точки замерзания, имеющихся в теле растворов и т.п.; б) поддержание температуры тела на более стабильном температурном уровне, чем температура окружающей среды обитания, что позволяет сохранить сложившийся для данного вида ход биохимических реакций.

Морфологическая адаптация – это наличие таких особенностей внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных для них условиях. Примером подобных адаптаций является выработанное в процессе длительной эволюции внешнее строение организмов, которые обитают в водной среде. В частности, приспособления к скоростному плаванию у многих рыб, кальмаров и парению в воде у планктоновых организмов. Растения, обитающие в пустыне, лишены листьев (вместо широких традиционных листьев у них сформировались колючие иглы), и их строение наилучшим образом приспособлено к максимальному накоплению и минимальным потерям влаги при высоких температурах (кактусы). Морфологический тип приспособления животного или растения, при котором они имеют внешнюю форму, отражающую способ взаимодействия со средой обитания, называют жизненной формой вида . При этом разные виды могут иметь сходную жизненную форму, если ведут близкий образ жизни. Примерами в данном случае могут служить кит (млекопитающее), пингвин (птица), акула (рыба).

Если у отдельного индивидуума адаптация к окружающей среде достигается за счёт его физиологических механизмов, то она именуетсяфизиологической адаптацией.

Физиологическое регулирование может оказаться недостаточным для противостояния к неблагоприятным условиям среды. Иногда длительное напряжение физиологических функций (стресс) приводит к истощению ресурсов организма и может привести к отрицательным последствиям. Поэтому во многих случаях при стойком отклонении условий среды от биологического оптимума происходят такие изменения физиологической регуляции, которые повышают её эффективность и вместе с этим уменьшают общее функциональное напряжение организма. Подобные изменения называют ещё акклимацией . Акклимация растений, животных и человека имеют большое экологическое значение. Физиологические адаптации проявляются в особенностях ферментативного набора в пищеварительном тракте животных, определяемого составом пищи. В качестве примера можно привести верблюда, который способен обеспечивать потребности организма в необходимом количестве влаги путём биохимического окисления собственного жира. Или изменения в организме животных и человека при недостатке кислорода. Низкое парциальное давление кислорода в условиях высокогорья вызывает состояние гипоксии – кислородного голодания клеток. Срочная реакция организма на гипоксию – это усиление вентиляции лёгких и интенсификация кровообращения, но это не может продолжаться длительное время, так как требует затрат энергии и дополнительного кислородного обеспечения. В связи с этим в разных системах организма происходят перестройки, направленные на ослабление гипоксического стресса и достаточного снабжения тканей кислородом при пониженном его содержании в окружающей среде. В первую очередь, стимулируется кроветворение: в крови повышается количество эритроцитов и в них возрастает относительное содержание особой формы гемоглобина, обладающего повышенным сродством к кислороду. В связи с этим кислородная ёмкость и кислородно-транспортная функция крови значительно возрастают. Затем наступают морфологические изменения в кровеносной системе: расширяются артерии сердца и мозга, в тканях сгущается капиллярная сеть – это всё облегчает доставку кислорода к клеткам. В самих же клетках за счёт увеличения активности окислительных ферментов также повышается сродство к кислороду, одновременно возрастает относительный уровень временного бескислородного обеспечения энергией – анаэробного гликолиза. Все эти процессы акклимации к гипоксии, происходящие на протяжении нескольких часов или дней, способствуют снятию функционального напряжения с дыхательной и кровеносной систем.

В природных условиях значение физиологической адаптации связано с естественными изменениями условий существования, в основном это связано с сезонными перепадами температуры, влажности, наличия в местах обитания корма и т.д. Хорошо всем известно осеннее увеличение теплоизоляции у многих млекопитающих и птиц за счёт линьки, появления зимнего оперения покровов тела (пуха, пера, меха) и накопления подкожного жира. В бескормное время изменяется режим и качество питания, физиологические функции направлены на экономное расходование энергии. Сезонные миграции птиц и рыб подготавливаются комплексом физиологических и морфологических сдвигов, изменениями поведения. Все эти изменения обеспечены специфическими видовыми программами физиологической адаптации. Однако новые физиологические качества организма, приобретаемые во время акклимации, не обладают высокой устойчивостью; при смене сезона и при возвращении в оптимальные условия они утрачиваются и не передаются по наследству. Этим отличается акклимация от видовой генетической адаптации.

В том случае, если у популяции организмов (видов) адаптация достигается благодаря механизму генетической изменчивости и наследственности, то её называют генетической адаптацией . Генетическая адаптация происходит на протяжении ряда поколений и связана с процессом видообразования и возникновения новых жизненных форм организмов.

Адаптационные ритмы жизни. Из-за осевого вращения Земли и движения её вокруг Солнца развитие жизни на планете происходило и происходит в условиях регулярной смены дня и ночи, а также чередования времён года. Подобная ритмичность создаёт, в свою очередь, периодичность, то есть повторяемость условий в жизни большинства видов. При этом вполне закономерно изменяется и действие большого числа экологических факторов: освещённости, температуры, влажности, давления атмосферного воздуха, всех компонентов погоды. Проявляется регулярность в повторении как критических для выживания периодов, так и благоприятных. Суточные ритмы приспосабливают организмы к смене дня и ночи. Так, например, у человека около ста физиологических характеристик подчиняются суточному циклу: кровяное давление, температура тела, частота сокращения сердца, ритм дыхания, выделение гормонов и многие другие.

Годовые ритмы приспосабливают организмы к сезонной смене условий. Благодаря этому самые уязвимые для многих видов процессы размножения и выращивания молодняка приходятся на наиболее благоприятный сезон. Следует особо подчеркнуть, что основным экологическим периодом, на который реагируют организмы в своих годовых циклах, является не случайное изменение погоды, а фотопериод , то есть изменения в соотношении дня и ночи.

Известно, что длина светового дня закономерно изменяется в течение года, и именно это служит весьма точным сигналом приближения весны, лета, осени и зимы. Способность организмов реагировать на изменение длины дня называется фотопериодизмом. Фотопериодизм растений, реакция на соотношение светлого (длина дня) и тёмного (длина ночи) периодов суток, выражающаяся в изменении процессов роста и развития, связана с приспособлением онтогенеза к сезонным изменениям внешних условий. Длина дня служит растениям указателем времени года и внешним сигналом для перехода к цветению или подготовки к неблагоприятному сезону. Одно из основных проявлений фотопериодизма – фотопериодичная реакция зацветания. Органом восприятия фотопериода служит лист, в котором в результате световых и темновых реакций образуется гормональный комплекс, стимулирующий зацветание. По фотопериоду, вызывающему цветение, растения делятся на длиннодневные (зерновые колосовые и др.), короткодневные (рис, просо, конопля, соя и др.) и нейтральные (гречиха, горох и др.). Длиннодневные растения распространены в основном в умеренных и приполярных широтах, короткодневные – ближе к субтропикам. Фотопериодизм существенно влияет на формообразование (клубней, луковиц, кочанов капусты, стеблей) и физиологические (интенсивность и форма роста, наступление периода покоя, листопад и др.) процессы. Виды растений различаются по принадлежности к той или иной фотопериодичной группе, а сорта и линии – по степени выраженности фотопериодичной реакции. Это учитывают при районировании сортов, а также в светокультуре и при выращивании растений в закрытом грунте.

У животных фотопериодизм контролирует сроки брачного периода, плодовитость, осенние и весенние линьки, яйценоскость и т.д., генетически связан с биологическими ритмами. Используя фотопериодичную реакцию, можно управлять развитием сельскохозяйственных животных и их плодовитостью.

Фототропизм (от греч. слова tropos – поворот, направление) это ростовые движения органов растений в ответ на одностороннее направленное действие какого-либо фактора внешней среды. Тропизм – явление раздражимости, вызывающее перераспределение в тканях растения фитогормонов. В результате этого клетки на одной стороне стебля, листа или корня растут быстрее, чем на другой, происходит изгиб органа от раздражителя (положительный тропизм) или от него (отрицательный) . Так, проросток изгибается в сторону источника света (фототропизм ), корень под действием земного притяжения растёт вертикально вниз (геотропизм) , корни растений растут по направлению к более влажной среде (гидротропизм) . Под действием прикосновения, трения усики вьющихся растений обвивают опору (гаптотропизм ), на плохо аэруемой почве корни некоторых мангровых деревьев растут вверх к источнику кислорода (аэротропизм ), пыльцевые трубки растут к семяпочке, выделяющей определённые химические вещества (хемотропизм) . Тропизм является приспособительными реакциями, позволяющему растению наиболее полно использовать факторы внешней среды или защищаться от их неблагоприятного влияния.

В процессе эволюции выработались характерные временные циклы с определённой последовательностью и длительностью периодов размножения, роста, подготовки к зиме, то есть биологические ритмы жизнедеятельности организмов в определённых условиях среды. Приливно-отливные ритмы. Виды организмов, обитающие в прибрежной или донной части мелководья (на литорали), в которую свет проникает до дна, находятся в условиях очень сложной периодичности внешней среды. На 24-часовой цикл колебания освещённости и других факторов накладывается ещё чередование приливов и отливов. В течение лунных суток (24 ч 50 мин) наблюдаются 2 прилива и два отлива. Дважды в месяц (новолуние и полнолуние) сила приливов и отливов достигает максимальной величины. Этой сложной ритмике подчинена жизнь организмов прибрежной зоны. Так, например, самки рыбы атерина в самый высокий прилив откладывают икру у кромки воды, закатывая её в песок. При отливе икра остаётся созревать в нём. Выход мальков происходит через полмесяца, совпадает со временем следующего высокого прилива.

Кроме адаптации у растений и животных выработались ответные защитные реакции на определённые изменения окружающей среды и воздействия на них. Например, у растений защита от неблагоприятных факторов среды может обеспечиваться:

  • особенностями анатомического строения (образованием кутикулы, корки, утолщением воскового налета или механической ткани и т.д.);
  • специальными органами защиты (формирование жгучих волосков, колючек);
  • двигательными и физиологическими реакциями;
  • выработкой защитных веществ (синтезом смол, фитонцидов, фитоалексинов, токсинов, защитных белков и.т.п.).

Известно, что каждый организм выживает и размножается только в конкретной среде, характеризующейся относительно узким диапазоном температур, количеством осадков, почвенных условий и т.д. Географический ареал любого вида соответствует географическому распределению подходящих для данного организма условий внешней среды (температуры, влажности, освещенности, атмосферного и водного давления).

Поэтому важно располагать информацией о сущности вызываемых явлений, связей и зависимостей, сложившихся между организмами, популяциями, биоценозами и факторами среды их обитания. Их теоретическую основу составляет закон единства организма и среды, согласно которому, по мнению
В.И. Вернадского, жизнь развивается в результате постоянного обмена веществом и информацией на базе потоков энергии в совокупном единстве среды и населяющих её организмов.

В процессе сопряжённой эволюции у различных видов растений и животных выработались взаимные приспособления друг другу, то есть коадаптация : они подчас бывают столь прочными, что раздельно жить в современных условиях уже не могут. Именно в этом проявляется единство органического мира. Коадаптация опыляемых насекомыми растений и
насекомых-опылителей есть пример исторически возникших взаимных приспособлений. В частности, следствием совместной эволюции является привязанность различных групп животных к определённым группам растений и местам их произрастания.

При рассмотрении вопросов связи организмов со средой экология должна, прежде всего, учитывать критерии выживания и размножения. Они в основном определяют экологические шансы устойчивости отдельных видов в данной среде или в конкретной экосистеме. В настоящее время сложились следующие определения (понятия) среды (рис.3.1).

Окружающая среда это пространство, вещество и энергия, окружающие организмы и воздействующие на них как положительно, так и отрицательно.


Рис.3.1. Классификация понятия «среда» (Н.Ф. Реймерс, 1990 г.)

Природной средой называется совокупность природных абиотических (неживой природы) и биотических (живой природы) факторов по отношению к растительным и животным организмам вне зависимости от контактов с человеком.

Антропогенная среда  это природная среда, видоизмененная человеческой деятельностью. Она включает «квазиприродную» среду (окультуренные ландшафты, агроценозы и другие объекты, не способные к самоподдержанию); «артеприродную» среду (искусственные сооружения, здания, асфальтированные дороги в сочетании с природными элементами – почвой, растительностью, воздухом и др.); окружающую человека среду – совокупность абиотических, биотических и социальных факторов в сочетании с «квазиприродной» и «артеприродной» средами. В факториальной экологии выделяют среду обитания и условия существования организмов.

Имеет место и конкретное пространственное понимание среды как непосредственного окружения организма – среда обитания. К ней относят только те элементы среды, с которыми данный организм вступает в прямые и непрямые отношения, то есть это всё то, что его окружает.

Каждый организм реагирует на окружающую среду в соответствии со своей генетической конституцией. Правило соответствия условий среды генетической предопределённости организма гласит: «До тех пор, пока среда, окружающая определённый вид организмов, соответствует генетическим возможностям приспособления этого вида к её колебаниям и изменениям, этот вид может существовать». Согласно этому правилу тот или иной вид живого возник в определённой среде и в той или иной степени смог приспособиться к ней. Дальнейшее его существование возможно лишь в ней или в близкой среде. Резкое и быстрое изменение условий среды обитания может привести к тому, что генетический аппарат вида не сможет приспособиться к новым условиям жизни. Это в полной мере можно отнести и к человеку. Каждый организм реагирует на окружающую среду в соответствии со своей генетической конституцией.