Заряд протона заряда заряду электрона. Заряд протона - базисная величина физики элементарных частиц


До начала 20 века ученые считали атом мельчайшей неделимой частицей вещества, но это оказалось не так. На самом деле, в центра атома располагается его ядро с заряженными положительно протонами и нейтральными нейтронами, вокруг ядра по орбиталям вращаются отрицательно заряженные электроны (данная модель атома была в 1911 году предложена Э. Резерфордом). Примечательно, что массы протонов и нейтронов практически равны, а вот масса электрона примерно в 2000 раз меньше.

Хоть атом содержит как положительно заряженные частицы, так и отрицательно, его заряд нейтрален, т.к., в атоме одинаковое количество протонов и электронов, а рзнозаряженные частицы нейтрализуют друг друга.

Позже ученые выяснили, что электроны и протоны обладают одинаковой величиной заряда, равной 1,6·10 -19 Кл (Кл - кулон, единица электрического заряда в системе СИ.

Никогда не задумывались над вопросом - какое кол-во электронов соответствует заряду в 1 Кл?

1/(1,6·10 -19) = 6,25·10 18 электронов

Электрическая сила

Электрические заряды воздействуют друг на друга, что проявляется в виде электрической силы .

Если какое-то тело имеет избыток электронов, оно будет обладать суммарным отрицательным электрическим зарядом, и наоборот - при дефиците электронов, тело будет иметь суммарный положительный заряд.

По аналогии с магнитными силами, когда одноименно заряженные полюса отталкиваются, а разноименно - притягиваются, электрические заряды ведут себя аналогичным образом. Однако, в физике недостаточно говорить просто о полюсности электрического заряда, важно его числовое значение.

Чтобы узнать величину силы, действующей между заряженными телами, необходимо знать не только величину зарядов, но и расстояние между ними. Ранее уже рассматривалась сила всемирного тяготения : F = (Gm 1 m 2)/R 2

  • m 1 , m 2 - массы тел;
  • R - расстояние между центрами тел;
  • G = 6,67·10 -11 Нм 2 /кг - универсальная гравитационная постоянная.

В результате проведенных лабораторных опытов, физики вывели аналогичную формулу для силы взаимодейтсвия электрических зарядов, которая получила название закон Кулона :

F = kq 1 q 2 /r 2

  • q 1 , q 2 - взаимодействующие заряды, измеренные в Кл;
  • r - расстояние между зарядами;
  • k - коэффициент пропорциональности (СИ : k=8,99·10 9 Нм 2 Кл 2 ; СГСЭ : k=1).
  • k=1/(4πε 0).
  • ε 0 ≈8,85·10 -12 Кл 2 Н -1 м -2 - электрическая постоянная.

Согласно закону Кулона, если два заряда имеют одинаковый знак, то действующая между ними сила F положительна (заряды отталкиваются друг от друга); если заряды имеют противоположные знаки, действующая сила отрицательна (заряды притягиваются друг к другу).

О том, насколько огромным по силе является заряд в 1 Кл можно судить, используя закон Кулона. Например, если предположить, что два заряда, каждый в 1Кл разнести на расстояние друг от друга в 10 метров, то они будут друг от друга отталкиваться с силой:

F = kq 1 q 2 /r 2 F = (8,99·10 9)·1·1/(10 2) = -8,99·10 7 Н

Это достаточно большая сила, примерно сопостовимая с массой в 5600 тонн.

Давайте теперь при помощи закона Кулона узнаем, с какой линейной скоростью вращается электрон в атоме водорода, считая, что он движется по круговой орбите.

Электростатическую силу, действующую на электрон, по закону Кулона можно приравнять к центростремительной силе:

F = kq 1 q 2 /r 2 = mv 2 /r

Учитывая тот факт, что масса электрона равна 9,1·10 -31 кг, а радиус его орбиты = 5,29·10 -11 м, получаем значение 8,22·10 -8 Н.

Теперь можно найти линейную скорость электрона:

8,22·10 -8 = (9,1·10 -31)v 2 /(5,29·10 -11) v = 2,19·10 6 м/с

Таким образом, электрон атома водорода вращается вокруг его центра со скоростью, равной примерно 7,88 млн. км/ч.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.



Если потереть стеклянную палочку о лист бумаги, то палочка приобретёт способность притягивать к себе листочки «султана» (см. рис. 1.1), пушинки, тонкие струйки воды. При расчёсывании сухих волос пластиковой расчёской волосы притягиваются к расчёске. В этих простых примерах мы встречаемся с проявлением сил, которые получили название электрических .

Рис. 1.1. Притягивание листочков «султана» наэлектризованной стеклянной палочкой.

Тела или частицы, которые действуют на окружающие предметы электрическими силами, называют заряженными или наэлектризованными . Например, упомянутая выше стеклянная палочка после того, как её потереть о лист бумаги, становится наэлектризованной.

Частицы имеют электрический заряд, если они взаимодействуют друг с другом посредством электрических сил. Электрические силы уменьшаются с увеличением расстояния между частицами. Электрические силы во много раз превышают силы всемирного тяготения.

Электрический заряд – это физическая величина, которая определяет интенсивность электромагнитных взаимодействий. Электромагнитные взаимодействия – это взаимодействия между заряженными частицами или телами.

Электрические заряды делятся на положительные и отрицательные. Положительным зарядом обладают стабильные элементарные частицы – протоны и позитроны , а также ионы атомов металлов и т.д. Стабильными носителями отрицательного заряда являются электрон и антипротон .

Существуют электрически незаряженные частицы, то есть нейтральные: нейтрон , нейтрино . В электрических взаимодействиях эти частицы не участвуют, так как их электрический заряд равен нулю. Бывают частицы без электрического заряда, но электрический заряд не существует без частицы.

На стекле, потёртом о шёлк, возникают положительные заряды. На эбоните, потёртом о мех – отрицательные заряды. Частицы отталкиваются при зарядах одинаковых знаков (одноимённые заряды ), а при разных знаках (разноимённые заряды ) частицы притягиваются.

Все тела состоят из атомов. Атомы состоят из положительно заряженного атомного ядра и отрицательно заряженных электронов, которые движутся вокруг ядра атома. Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц – нейтронов. Заряды в атоме распределены таким образом, что атом в целом является нейтральным, то есть сумма положительных и отрицательных зарядов в атоме равна нулю.

Электроны и протоны входят в состав любого вещества и являются наименьшими устойчивыми элементарными частицами. Эти частицы могут неограниченно долго существовать в свободном состоянии. Электрический заряд электрона и протона называется элементарным зарядом.

Элементарный заряд – это минимальный заряд, которым обладают все заряженные элементарные частицы. Электрический заряд протона равен по абсолютной величине заряду электрона:

Е = 1,6021892(46) * 10 -19 Кл Величина любого заряда кратна по абсолютной величине элементарному заряду, то есть заряду электрона. Электрон в переводе с греческого electron – янтарь, протон – от греческого protos – первый, нейтрон от латинского neutrum – ни то, ни другое.

Проводники и диэлектрики

Электрические заряды могут перемещаться. Вещества, в которых электрические заряды могут свободно перемещаться, называются проводниками . Хорошими проводниками являются все металлы (проводники I рода), водные растворы солей и кислот – электролиты (проводники II рода), а также раскалённые газы и другие вещества. Тело человека также является проводником. Проводники обладают высокой электропроводностью, то есть хорошо проводят электрический ток.

Вещества, в которых электрические заряды не могут свободно перемещаться, называются диэлектриками (от английского dielectric, от греческого dia – через, сквозь и английского electric – электрический). Эти вещества также называют изоляторами . Электропроводность диэлектриков очень мала по сравнению с металлами. Хорошими изоляторами являются фарфор, стекло, янтарь, эбонит, резина, шёлк, газы при комнатных температурах и другие вещества.

Разделение на проводники и изоляторы условно, так как проводимость зависит от различных факторов, в том числе от температуры. Например, стекло хорошо изолирует только в сухом воздухе и становится плохим изолятором при большой влажности воздуха.

Проводники и диэлектрики играют огромную роль в современном применении электричества.

В настоящей статье на основе эфиродинамической сущности электрического заряда и структур элементарных частиц приводится расчет величин электрических зарядов протона, электрона и фотона.

Ложное знание опаснее невежества
Дж. Б. Шоу

Введение. В современной физике электрический заряд является одной из важнейших характеристик и неотъемлемым свойством элементарных частиц. Из физической сущности электрического заряда , определенной на основе эфиродинамической концепции , следует ряд свойств, таких как пропорциональность величины электрического заряда массе его носителя; электрический заряд не квантуется, а переносится квантами (частицами); величина электрического заряда знакоопределенная, т. е. всегда положительная; которые накладывают существенные ограничения на природу элементарных частиц. А именно: в природе не существует элементарных частиц, не имеющих электрического заряда; величина электрического заряда элементарных частиц величина положительная и больше нуля. Исходя из физической сущности величина электрического заряда определяется массой, скоростью потока эфира, составляющего структуру элементарной частицы и их геометрическими параметрами. Физическая сущность электрического заряда (электрический заряд это мера потока эфира ) однозначно определяет эфиродинамическую модель элементарных частиц , тем самым снимая вопрос структуры элементарных частиц с одной стороны и указывает на несостоятельность стандартной , кварковой и прочих моделей элементарных частиц с другой.

Величина электрического заряда также определяет интенсивность электромагнитного взаимодействия элементарных частиц. С помощью электромагнитного взаимодействия осуществляется взаимодействие протонов и электронов в атомах и молекулах. Тем самым электромагнитное взаимодействие определяет возможность устойчивого состояния таких микроскопических систем. Размеры их существенным образом определяются величиной электрических зарядов электрона и протона.

Ошибочная трактовка современной физикой свойств, таких как существование положительного и отрицательного, элементарного, дискретного, квантованного электрического заряда и т. д. , некорректная интерпретация экспериментов по измерению величины электрического заряда привели к ряду грубейших ошибок в физике элементарных частиц (бесструктурность электрона, нулевая масса и заряд фотона, существование нейтрино, равенство по абсолютной величине электрических зарядов протона и электрона элементарному).

Из выше изложенного следует, что электрический заряд элементарных частиц в современной физике имеет определяющее значение в понимании основ микромира и требует взвешенной и обоснованной оценки их величин.

В естественных условиях протоны и электроны находятся в связанном состоянии, образуя протон-электронные пары. Непонимание этого обстоятельства, а также ошибочное представление, что заряды электрона и протона равны по абсолютной величине элементарному, оставили современную физику без ответа на вопрос: какова реальная величина электрических зарядов протона, электрона и фотона?

Электрический заряд протона и электрона. В естественном состоянии протон-электронная пара существует в виде химического элемента атома водорода. Согласно теории : “Атом водорода является несводимой структурной единицей вещества, возглавляющей периодическую таблицу Менделеева. В этом отношении радиус атома водорода следует отнести к категории фундаментальных констант. … Рассчитываемый радиус Бора равен = 0,529 Å. Это важно, поскольку прямых методов измерения радиуса атома водорода нет. …радиус по Бору – это радиус окружности круговой орбиты электрона, и он определен в полном соответствии с общепринятым пониманием термина «радиус».”

Известно также, что измерения радиуса протона осуществлялись с помощью атомов обычного водорода, которые привели (CODATA -2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10 −15 м).

Для оценки величины электрического заряда протона (электрона) используем общее выражение электрического заряда :

q = (1/ k ) 1/2 u r (ρ S ) 1/2 , (1)

где k = 1 / 4πε 0 – коэффициент пропорциональности из выражения закона Кулона,

ε0 ≈ 8,85418781762039·10 −12 Ф·м −1 – электрическая постоянная; u – скорость, ρ — плотность потока эфира; S – сечение тела протона (электрона).

Преобразуем выражение (1) следующим образом

q = (1/ k ) 1/2 u r (mS / V ) 1/2 ,

где V = r S объем тела, m масса элементарной частицы.

Протон и электрон – это дуэтоны : — структура, состоящая из двух торообразных тел, соединенных боковыми поверхностями торов, симметричная относительно плоскости деления, поэтому

q = (1/ k ) 1/2 u r (m 2 S T /2 V T ) 1/2 ,

где S T – сечение, r — длина, V T = r S Т — объем тора.

q = (1/ k ) 1/2 u r (mS T / V T ) 1/2 ,

q = (1/k) 1/2 u r (mS T /rS T) 1/2 ,

q = (1/ k ) 1/2 u (mr ) 1/2 . (2)

Выражение (2) представляет собой модификацию выражения (1) для электрического заряда протона (электрона).

Пусть R 2 = 0.2 R 1 , где R 1 – внешний, а R 2 – внутренний радиусы тора.

r = 2π 0.6 R 1 ,

соответственно электрический заряд протона и электрона

q = (1/ k ) 1/2 u (m 2π 0.6 R 1 ) 1/2 ,

q = (2π 0.6 / k ) 1/2 u (m R 1 ) 1/2 ,

q = 2π (1.2 ε 0 ) 1/2 u (m R 1 ) 1/2

q = 2.19 π (ε 0 ) 1/2 u (m R 1 ) 1/2 (3)

Выражение (3) представляет собой форму выражения величины электрического заряда для протона и электрона.

При u = 3∙10 8 м/ с – вторая звуковая скорость эфира , выражение 2.19 π (ε 0 ) 1/2 u = 2.19 π(8,85418781762·10 −12 Ф/м) 1/2 3∙10 8 м/ с = 0,6142∙10 4 м 1/2 Ф 1/2 с -1 .

Предположим, что радиус протона (электрона) в представленной выше структуре это радиус R 1 .

Для протона известно, что m р = 1,672∙10 -27 кг, R 1 = r р = 0,8751∙10 -15 м, тогда

q р = 2.19 π (ε 0 ) 1/2 u (m R 1 ) 1/2 = 0,6142∙10 4 [м 1/2 Ф 1/2 с -1 ] ∙ (1,672∙10 -27 [ кг] ∙

0,8751∙10 -15 [м]) 1/2 = 0,743∙10 -17 Кл.

Таким образом, электрический заряд протона q р = 0,743∙10 -17 Кл.

Для электрона известно , что m э = 0,911∙10 -31 кг. Для определения радиуса электрона, при допущении, что структура электрона подобна структуре протона, а плотность потока эфира в теле электрона также равна плотности потока эфира в теле протона, используем известное соотношение между массами протона и электрона, которое равно

m р /m э = 1836,15.

Тогда r р /r э = (m р /m э) 1/3 = 1836,15 1/3 = 12,245, т. е. r э = r р /12,245.

Подставляя данные для электрона в выражение (3) получим

q э = 0,6142∙10 4 [м 1/2 Ф 1/2 /c] ∙ (0,911∙10 -31 [ кг] 0,8751∙10 -15 [м]/12,245) 1/2 =

0,157∙10 -19 Кл.

Таким образом, электрический заряд электрона q э = 0,157∙10 -19 Кл.

Удельный заряд протона

q р /m р = 0,743∙10 -17 [Кл] /1,672∙10 -27 [кг] = 0,444∙10 10 Кл /кг.

Удельный заряд электрона

q э /m э = 0,157∙10 -19 [Кл] /0,911∙10 -31 [кг] = 0,172∙10 12 Кл /кг.

Полученные значения электрических зарядов протона и электрона являются оценочными и не имеют фундаментального статуса. Это обусловлено тем, что геометрические и физические параметры протона и электрона в протон-электронной паре взаимозависимы и определяются местом расположения протон-электронной пары в атоме вещества и регулируются законом сохранения момента количества вращения. При изменении радиуса орбиты движения электрона меняются соответственно масса протона и электрона и, соответственно, скорости вращения вокруг собственной оси вращения. Так как электрический заряд пропорционален массе, то изменение массы протона или электрона, соответственно, приведет к изменению их электрических зарядов.

Таким образом, во всех атомах вещества, электрические заряды протонов и электронов отличаются друг от друга и имеют свое конкретное значение, однако в первом приближении их значения можно оценивать как значения электрического заряда протона и электрона атома водорода, определенного выше. Кроме того, данное обстоятельство указывает на то, что электрический заряд атома вещества является его уникальной характеристикой, которая может быть использована для его идентификации.

Зная величины электрических зарядов протона и электрона для атома водорода можно оценить электромагнитные силы, обеспечивающие устойчивость атома водорода.

В соответствии с модифицированным законом Кулона электрическая сила притяжения Fпр будет равна

Fпр = k (q 1 — q 2) 2 / r 2 , при q 1 ≠ q 2 ,

где q 1 – электрический заряд протона, q 2 – электрический заряд электрона, r – радиус атома.

Fпр = (1/4πε 0)(q 1 — q 2) 2 / r 2 = (1/4π 8,85418781762039·10 −12 Ф·м −1) ·

  • (0,743∙10 -17 Кл — 0,157∙10 -19 Кл) 2 /(5,2917720859·10 −11 ) 2 = 0,1763·10 -3 Н.

В атоме водорода на электрон действует электрическая (кулоновская) сила притяжения равная 0,1763·10 -3 Н. Так как атом водорода находится в устойчивом состоянии, то магнитная сила отталкивания также равна 0,1763·10 -3 Н. Для сравнения вся научная и учебно-методическая литература приводят расчет силы электрического взаимодействия, например , который дает результат 0,923 ·10 -7 Н. Приведенный в литературе расчет некорректен, так как основан на ошибках, рассмотренных выше.

Современная физика утверждает, что минимальная энергия, необходимая для вырывания электрона из атома, называется энергией ионизации или энергией связи, которая для атома водорода равна 13,6 эВ . Оценим энергию связи протона и электрона в атоме водорода на основе полученных значений электрического заряда протона и электрона.

Е св. = F пр ·r н = 0,1763·10 -3 · 6,24151·10 18 эВ /м · 5,2917720859·10 −11 = 58271эВ .

Энергия связи протона и электрона в атоме водорода равна 58,271 КэВ .

Полученный результат указывает на некорректность понятия энергии ионизации и ошибочность второго постулата Бора : “излучение света происходит при переходе электрона из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией. Энергия излучённого фотона равна разности энергий стационарных состояний”. В процессе возбуждения протон-электронной пары под воздействием внешних факторов, электрон смещается (удаляется) от протона на некоторую величину, максимальное значение которой определяется энергией ионизации. После генерации фотонов протон-электронной парой электрон возвращается на прежнюю орбиту.

Оценим величину максимального смещения электрона при возбуждении атома водорода некоторым внешним фактором энергией 13,6 эВ.

Радиус атома водорода станет равным 5,29523·10 −11 , т. е. увеличится ориентировочно на 0,065%.

Электрический заряд фотона. Согласно эфиродинамической концепции фотон это : элементарная частица, представляющая собой замкнутый тороидальный вихрь уплотненного эфира с кольцевым движением тора (как колеса) и винтовым движением внутри него, осуществляющая поступательно-циклоидальное движение (по винтовой траектории), обусловленное гироскопическими моментами собственного вращения и вращения по круговой траектории и предназначенная для переноса энергии.

Исходя из структуры фотона, как тороидального вихревого тела, движущегося по винтовой траектории, где r γ λ внешний радиус, m γ λ – масса, ω γ λ — собственная частота вращения, электрический заряд фотона может быть представлен следующим образом.

Для упрощения расчетов примем длину потока эфира в теле фотона r =2π r γ λ ,

u = ω γ λ r γ λ , r 0 λ = 0.2 r γ λ — радиус сечения тела фотона.

q γ λ = (1/k) 1/2 ω γ λ r γ λ 2πr γ λ (m λ /V · V/2πr γ λ) 1/2 = (1/k) 1/2 ω γ λ r γ λ (m λ 2πr γ λ) 1/2 =

= (4πε 0) 1/2 ω γ λ r γ λ (m λ 2πr γ λ) 1/2 = 2π(2ε 0) 1/2 ω γ λ (m λ r 3 γ λ) 1/2 ,

q γ λ = 2 π (2 ε 0 ) 1/2 ω γ λ (m λ r 3 γ λ ) 1/2 . (4)

Выражение (4) представляет собственный электрический заряд фотона без учета движения по круговой траектории. Параметры ε 0 , m λ , r γ λ это квазипостоянные, т.е. переменные, значения которых меняются незначительно (доли %) во всей области существования фотона (от инфракрасного до гамма). Это значит, что собственный электрический заряд фотона это функция от частоты вращения вокруг собственной оси. Как показано в работе отношение частот гамма фотона ω γ λ Г к фотону инфракрасного диапазона ω γ λ И составляет порядка ω γ λ Г /ω γ λ И ≈ 1000, соответственно изменяется и величина собственного электрического заряда фотона. В современных условиях эта величина не может быть измерена, поэтому имеет только теоретическое значение.

Согласно определению фотона, он имеет сложное винтовое движение, которое можно разложить на движение по круговой траектории и прямолинейное. Для оценки полной величины электрического заряда фотона необходимо учитывать движение по круговой траектории. В этом случае собственный электрический заряд фотона оказывается распределенным по этой круговой траектории. Учитывая периодичность движения, у которого шаг винтовой траектории трактуется как длина волны фотона, можно говорить о зависимости величины полного электрического заряда фотона от его длины волны.

Из физической сущности электрического заряда следует пропорциональность величины электрического заряда его массе, следовательно и его объему. Таким образом собственный электрический заряд фотона пропорционален собственному объему тела фотона (V γ λ). Аналогично, полный электрический заряд фотона с учетом движения по круговой траектории будет пропорционален объему (V λ), который сформирует фотон, движущийся по круговой траектории.

q λ = q γ λ V λ /V γ λ = q γ λ 2π 2 R λ r 2 γ λ /2π 2 Lr 3 γ λ = q γ λ R λ / L 2 r γ λ ,

q λ = q γ λ R λ / L 2 r γ λ . (5)

где L = r 0γλ /r γλ — параметр структуры фотона, равный отношению радиуса сечения к внешнему радиусу тела фотона (≈ 0,2), V Т = 2π 2 R r 2 – объем тора , R - радиус окружности вращения образующей окружности тора; r - радиус образующей окружности тора.

q λ = q γ λ R λ / L 2 r γ λ = 2π(2ε 0) 1/2 ω γ λ (m λ r 3 γ λ) 1/2 R λ / L 2 r γ λ ,

q λ = 2 π (2 ε 0 ) 1/2 ω γ λ (m λ r γ λ ) 1/2 R λ / L 2 . (6)

Выражение (6) представляет полный электрический заряд фотона. Ввиду зависимости полного электрического заряда от геометрических параметров фотона, значения которых в настоящее время известны с большой погрешностью, получить точное значение величины электрического заряда расчетным путем не представляется возможным. Однако его оценка позволяет сделать ряд существенных теоретических и практических выводов.

Для данных из работы , т.е. при λ = 225 нм, ω γ λ ≈ 6,6641·10 30 об/с,

m λ ≈ 10 -40 кг, r γ λ ≈ 10 -20 м, R λ ≈ 0,179·10 -16 м, L ≈ 0,2, получим величину полного электрического заряда фотона:

q λ = 0, 786137 ·10 -19 Кл.

Полученное значение полного электрического заряда фотона длиной волны 225 нм хорошо согласуется с величиной измеренной Р. Милликеном (1,592·10 -19 Кл) , позднее ставшей фундаментальной постоянной, с учетом того, что его значение соответствует электрическому заряду двух фотонов. Удвоенное значение рассчитанного электрического заряда фотона:

2q λ = 1,57227·10 -19 Кл,

в Международной системе единиц (СИ) элементарный электрический заряд равен 1,602 176 6208(98)·10 −19 Кл . Удвоенное значение элементарного электрического заряда обусловлено тем, что протон-электронная пара, в силу своей симметрии, всегда генерирует два фотона. Это обстоятельство экспериментально подтверждается существованием такого процесса как аннигиляция электрон – позитронной пары, т.е. в процессе взаимоуничтожения электрона и позитрона успевают сгенерироваться два фотона, а также существованием таких известных приборов, как фотоэлектронные умножители и лазеры.

Выводы. Итак, в данной работе показано, что электрический заряд является фундаментальным свойством природы, играющим важную роль в понимании сущности элементарных частиц, атомов и других структур микромира.

Эфиродинамическая сущность электрического заряда позволяет дать обоснование интерпретации структур, свойств и параметров элементарных частиц, отличающихся от известных современной физике.

На основе эфиродинамической модели атома водорода и физической сущности электрического заряда даны расчетные оценки электрических зарядов протона, электрона и фотона.

Данные для протона и электрона, в виду отсутствия экспериментального подтверждения на данный момент, носят теоретический характер, однако с учетом погрешности могут быть использованы как в теории, так и на практике.

Данные для фотона хорошо согласуются с результатами известных экспериментов по измерению величины электрического заряда и обосновывают ошибочное представление элементарного электрического заряда.

Литература:

  1. Лямин В. С., Лямин Д. В. Физическая сущность электрического заряда.
  2. Кастерин Н. П. Обобщение основных уравнений аэродинамики и электродинамики
    (Аэродинамическая часть) . Проблемы физической гидродинамики / Сборник статей под ред. академика АН БССР А.В. Лыкова. – Минск: Институт тепло- и массообмена АН БССР, 1971, с. 268 – 308.
  3. Ацюковский В.А. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире. Издание второе. М.: Энергоатомиздат, 2003. 584 с.
  4. Емельянов В. М. Стандартная модель и её расширения. - М.: Физматлит, 2007. - 584 с.
  5. Клоуз Ф. Введение в кварки и партоны. - М.: Мир , 1982. - 438 с.
  6. Ахиезер А И, Рекало М П «Электрический заряд элементарных частиц» УФН 114 487–508 (1974).
  7. .
  8. Физическаяэнциклопедия. В 5-ти томах. - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

Лямин В.С. , Лямин Д. В. г. Львов

ОПРЕДЕЛЕНИЕ

Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода.

Ученые расходятся во мнении, какое и научных событий считать открытием протона. Важную роль в открытии протона сыграли:

  1. создание Э. Резерфордом планетарной модели атома;
  2. открытие изотопов Ф. Содди, Дж. Томсоном, Ф. Астоном;
  3. наблюдения за поведением ядер атомов водорода при выбивании их альфа-частицами из ядер азота Э. Резерфордом.

Первые фотографии следов протона были получены П. Блэкеттом в камере Вильсона при исследовании процессов искусственного превращения элементов. Блэкетт исследовал процесс захвата альфа частиц ядрами азота. В этом процессе испускался протон и ядро азота превращалось в изотоп кислорода.

Протоны совместно с нейтронами входят в состав ядер всех химических элементов. Количество протонов в ядре определяет атомный номер элемента в периодической системе Д.И. Менделеева.

Протон - это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как , тогда можно записать, что:

В настоящее время считают, что протон не является элементарной частицей. Он имеет сложную структуру и состоит из двух u- кварков и одного d - кварка. Электрический заряд u - кварка () положительный и он равен

Электрический заряд d - кварка () отрицательный и равен:

Кварки связывают обмен глюонами, которые являются квантами поля, они переносят сильное взаимодействие. То, что протоны имеют в своей структуре несколько точечных центров рассеяния подтверждено экспериментами по рассеянию электронов на протонах.

Протон имеет конечные размеры, о которых ученые до сих пор спорят. В настоящее время протон представляют как облако, которое имеет размытую границу. Такая граница состоит из постоянно возникающих и аннигилирующих виртуальных частиц. Но в большинстве простых задач протон, конечно можно считать точечным зарядом. Масса покоя протона () примерно равна:

Масса протона в 1836 раз больше, чем масса электрона.

Протоны принимают участие во всех фундаментальных взаимодействиях: сильные взаимодействия объединяют протоны и нейтроны в ядра, электроны и протоны при помощи электромагнитных взаимодействий соединяются в атомах. В качестве слабого взаимодействия можно привести, например, бета-распад нейтрона (n):

где p - протон; — электрон; — антинейтрино.

Распад протона получен пока еще не был. Это является одной из важных современных задач физики, так как это открытие стало бы существенным шагом в понимании единства сил природы.

Примеры решения задач

ПРИМЕР 1

Задание Ядра атома натрия бомбардируют протонами. Какова сила электростатического отталкивания протона от ядра атома, если протон находится на расстоянии м. Считайте, что заряд ядра атома натрия в 11 раз больше, чем заряд протона. Влияние электронной оболочки атома натрия можно не читывать.
Решение За основу решения задачи примем закон Кулона, который можно для нашей задачи (считая частицы точечными) записать следующим образом:

где F - сила электростатического взаимодействия заряженных частиц; Кл — заряд протона; - заряд ядра атома натрия; - диэлектрическая проницаемость вакуума; — электрическая постоянная. Используя имеющиеся у нас данные можно провести вычисления искомой силы отталкивания:

Ответ Н

ПРИМЕР 2

Задание Рассматривая простейшую модель атома водорода, считают, что электрон движется по круговой орбите вокруг протона (ядра атома водорода). Чему равна скорость движения электрона, если радиус его орбиты равен м?
Решение Рассмотрим силы (рис.1), которые действуют на движущийся по окружности электрон. Это сила притяжения со стороны протона. По закону Кулона мы запишем, что ее величина равна ():

где =— заряд электрона; - заряд протона; — электрическая постоянная. Сила притяжения меду электроном и протоном в любой точке орбиты электрона направлена от электрона к протону по радиусу окружности.