Сколько видов нуклеиновых кислот. Нуклеиновые кислоты и их роль в жизнедеятельности клетки — Гипермаркет знаний

Нуклеиновые кислоты - фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации. Открыты они в 1869 г. швейцарским химиком Ф. Мишером в ядрах лейкоцитов. Впоследствии нуклеиновые кислоты были обнаружены во всех растительных и животных клетках, бактериях, вирусах и грибах.

В природе существуют два вида нуклеиновых кислот - дезоксирибонуклеиновая (ДНК) и рибонуклеиновые (РНК) Различие в названиях объясняется тем, что молекула ДНК содержит пятиуглеродный сахар дезоксирибозу, а молекула РНК - рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме.

ДНК локализуется преимущественно в хромосомах клеточного ядра (99 % всей ДНК клетки), а также в митохондриях и хлоропластах. РНК, кроме ядра, входит в состав рибосом, цитоплазмы, пластид и митохондрий.

Нуклеиновые кислоты - сложные биополимеры, мономерами которых являются нуклеотиды . В состав каждого нуклеотида входит пятиуглеродный сахар (рибоза или дезоксирибоза), азотистое основание и остаток фосфорной кислоты.

Существует пять основных азотистых оснований: аденин, гуанин, урацил, тимин и цитозин. Первые два являются пуриновыми - их молекулы состоят из двух соединенных между собой колец. Следующие три являются пиримидинами и имеют одно шестичленное кольцо.

Названия нуклеотидов происходят от названия соответствующих азотистых оснований; и те и другие обозначаются заглавными буквами: аденин - аденилат (А), гуанин - гуанилат (Г), цитозин - цитидилат (Ц), урацил - уридилат (У), тимин - дезокситимилилат (Т).

Количество нуклеотидов в молекуле нуклеиновых кислот бывает разным - от 80 в молекулах транспортных РНК до нескольких десятков миллионов у ДНК.

ДНК

Молекула ДНК - это двухцепочечная спираль, закрученная вокруг собственной оси.

В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между фосфатной группой одного нуклеотида и 3"-спиртовой группой пентозы другого. Такие связи называются фосфодиэфирными. Фосфатная группа образует мостик между 3"-углеродом одного пентозного цикла и 5"-углеродом следующего.

Остов цепей ДНК образован, таким образом, сахарофосфатными остатками.

Полинуклеотидная цепь ДНК закручена в виде спирали, напоминая винтовую лестницу и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между аденином и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными . В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью , и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

Цепи в молекуле ДНК противоположно направлены, т. е., если одна цепь имеет направление от 3"-конца к 5"-концу, то в другой цепи 3"-концу соответствует 5"-конец и наоборот. Это свойство биспирали ДНК называется антипараллельностью .

Впервые двухцепочечная модель молекулы ДНК была предложена в 1953 г. американским ученым Дж. Уотсоном и англичанином Ф. Криком. Он объединил данные Э. Чаргаффа о соотношении пуриновых и пиримидиновых оснований молекул ДНК и результаты рентгеноструктурного анализа, полученные М. Уилкинсом и Р. Франклин. За разработку двухспиральной модели молекулы ДНК Уотсон, Крик и Уилкинс были удостоены в 1962 г. Нобелевской премии.

ДНК - самые крупные биологические молекулы. Их длина составляет от 0,25 мм - у некоторых бактерий до 40 мм - у человека. Это значительно больше самой крупной молекулы белка, которая в развернутом виде достигает не более 100-200 нм. Масса молекулы ДНК составляет 6 ∙ 10 -12 г.

Диаметр молекулы ДНК - 2 нм, шаг спирали - 3,4 нм; каждый виток спирали содержит 10 пар нуклеотидов. Спиральная структура поддерживается многочисленными водородными связями, возникающими между комплементарными азотистыми основаниями, и гидрофобными взаимодействиями. Молекулы ДНК эукариотических организмов линейны. У прокариот ДНК, напротив, замкнута в кольцо и не имеет ни 3"-, ни 5"-концов.

Подобно белкам при изменении условий ДНК может подвергаться денатурации, которая называется плавлением. При постепенном возврате к нормальным условиям ДНК ренатурирует.

Функции ДНК

Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В ДНК любой клетки закодирована информация о всех белках данного организма, о том, какие белки и в какой последовательности будут синтезироваться.

РНК

Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза. Вместо тимидилового нуклеотида (Т) входит уридиловый (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутрицепочечном соединении комплементарных нуклеотидов.

Цепочки РНК значительно короче ДНК.

Виды РНК

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям.

Информационная (матричная) РНК - мРНК - наиболее разнородная по размерам и структуре. мРНК представляет собой незамкнутую полинуклеотидную цепь. Она синтезируется в ядре при участии фермента РНК-полимеразы по принципу комплементарности участку ДНК, отвечающего за кодирование данного белка. мРНК выполняет важнейшую функцию в клетке. Она служит в качестве матриц для синтеза белков, передавая информацию об их структуре с молекул ДНК. Каждый белок клетки кодируется специфичной ему мРНК.

Рибосомная РНК - рРНК . Это одноцепочечные нуклеиновые кислоты, которые в комплексе с белками образуют рибосомы - органеллы, на которых происходит синтез белка. Информация о структуре рРНК закодирована в участках ДНК, расположенных в области вторичной перетяжки хромосом. На долю рРНК приходится 80 % всей РНК клетки, поскольку клетки содержат большое количество рибосом. рРНК обладают сложной вторичной и третичной структурой, образуя петли на комплементарных участках, что приводит к самоорганизации этих молекул в сложное по форме тело. В состав рибосом входят 3 типа рРНК - у прокариот и 4 типа рРНК - у эукариот.

Транспортная (трансферная) РНК - тРНК . Молекула тРНК состоит в среднем из 80 нуклеотидов. Содержание тРНК в клетке - около 15 % всей РНК. Функция тРНК - перенос аминокислот к месту синтеза белка и участие в процессе трансляции. Число различных типов тРНК в клетке невелико (около 40). Все они имеют сходную пространственную организацию. Благодаря внутрицепочечным водородным связям молекула тРНК приобретает характерную вторичную структуру, называемую клеверным листом .

Трехмерная же модель тРНК выглядит несколько иначе. В тРНК выделяют четыре петли: акцепторную (служит местом присоединения аминокислоты), антикодоновую (узнает кодон в мРНК в процессе трансляции), две боковые.

1. История открытия и названия нуклеиновых кислот

3. Получение нуклеиновых кислот

4. Химические свойства нуклеиновых кислот

5. Применение нуклеиновых кислот

6. Занимательные факты о нуклеиновых кислотах


1. История открытия нуклеинов и их названия

Открытие нуклеиновых кислот связано с именем молодого врача из города Базеля (Швейцария) Фридриха Мишера . После окончания медицинского факультета Мишер был послан для усовершенствования и работы над диссертацией в Тюбинген (Германия) в физиолого-химическую лабораторию, возглавляемую Ф. Гоппе-Зейлером . Тюбингенская лаборатория в то время была известна ученому миру. Пройдя практику по органической химии, Мишер приступил к работе в биохимической лаборатории. Ему было поручено заняться изучением химического состава гноя. Молодой ученый не возражал против предложенной темы, так как считал лейкоциты, присутствующие в гное, одними из самых простых клеток.

Путём многочисленных опытов он получил из гнойных клеток вещество ядерного происхождения. Мишер был уверен именно в ядерном его источнике. Поэтому он начал более тщательное выделение ядер. В то время еще никто в биохимических лабораториях не пытался выделить ядра или какие-либо другие субклеточные компоненты, так что и здесь он был пионером.

Продолжив дальше очищать ядро от других клеточных фрагментов, он получил странное вещетво. Оно не разлагалось протеолитическими ферментами, значит, не являлось белком. Отсутствие растворимости в горячем спирте указывало на то, что это вещество не являлось и фосфолипидом. По-видимому, оно относилось к новому классу биохимических соединений.

Но Мишер с большой горячностью настаивал на точности своих результатов и добивался разрешения опубликовать их в печати. Тогда Гоппе-Зейлер решил проверить данные Мишера лично. Он и два его ассистента (одним из них был русский химик Любавин) в течение года шаг за шагом прошли все этапы аналитической работы Мишера и полностью подтвердили его данные, выделив нуклеин из клеток крови и из дрожжей.

В 1871 г. работа Мишера вместе с подтверждающими ее контрольными работами Гоппе-Зейлера и его ассистентов увидела свет. Существование нуклеина как специфического ядерного вещества стало научным фактом . Вскоре методика Мишера была применена для выделения нуклеина из различных тканей.

Термин «нуклеиновые кислоты» был предложен в 1889 : нуклеиновыми они были названы потому, что впервые были открыты в ядрах клеток, а кислотами - из-за наличия в их составе остатков фосфорной кислоты. Позже было показано, что нуклеиновые кислоты построены из большого числа нуклеотидов (от нескольких десятков до сотен миллионов). В состав каждого нуклеотида входит азотистое основание, углевод (пентоза) и фосфорная кислота.

2. Нахождение нуклеиновых кислот в природе

Нуклеиновые кислоты в природе встречаются во всех живых клетках. Живые клетки, за исключением сперматозоидов, в норме содержат значительно больше рибонуклеиновой, чем дезоксирибонуклеиновой кислоты. На методы выделения дезоксирибонуклеиновых кислот оказало большое влияние то обстоятельство, что, тогда как рибонуклеопротеиды и рибонуклеиновые кислоты растворимы в разбавленном (0,15 М) растворе хлористого натрия, дезоксирибонуклеопротеидные комплексы фактически в нем нерастворимы.

Поэтому гомогенизированный орган или организм тщательно промывают разбавленным солевым раствором, из остатка с помощью крепкого солевого раствора экстрагируют дезоксирибонуклеиновую кислоту, которую осаждают затем добавлением этанола.

В клетках эукариот (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеотид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

3. Получение нуклеиновых кислот

В клетках нуклеиновые кислоты связаны с белками, образуя нуклеопротеиды. Выделение нуклеиновых кислот сводится к очистке их от белков. Для этого препараты, содержащие нуклеиновые кислоты, обрабатывают ПАВ и экстрагируют белки фенолом. Послед, очистка и фракционирование нуклеиновых кислот проводятся с помощью ультрацентрифугирования, различных видов жидкостной хроматографии и гель - электрофореза. Для получения индивидуальных нуклеиновых кислот обычно используют различные варианты последнего метода.

Современные методы химического синтеза нуклеиновых кислот позволяют получать крупные фрагменты ДНК, в том числе целые гены. Методические основы химически - ферментативных методов синтеза ДНК разработаны X. Кораной.

Они включают:

Химический синтез комплементарных, взаимоперекрывающихся олигонуклеотидов, из которых затем в результате комплементационных взаимодействий выстраиваются дуплексы - фрагменты молекулы синтезируемой ДНК с несовпадающими разрывами в обеих цепях;

Соединение (лигирование) таких олигонуклеотидов в составе дуплекса с помощью фермента Т4 ДНК-лигазы. Сборку протяженных ДНК из синтетически однотяжевых олигонуклеотидов проводят в несколько этапов. Сначала собирают небольшие дуплексы с "липкими" концами (однотяжевыми комплементарными участками), из которых затем последовательно формируют более протяженные структуры. Таким образом могут быть получены искусственные фрагменты ДНК большой длины и с любой нуклеотидной последовательностью. С помощью генетической инженерии возможно клонирование (получение в индивидуальном виде и размножение) искусственных ДНК.

Несмотря на малую эффективность этого метода, были синтезированы олигонуклеотиды, содержащие до 16 звеньев, из которых были собраны первые синтетические гены. Фосфодиэфирный метод образования межнуклеотидных связей, использованный Кораной, имеет историческое значение. Однако разработанные им приемы введения и избирательные удаления защитных групп широко используются в других методах синтеза нуклеиновых кислот.

Важным шагом в совершенствовании синтеза олигонуклеотидов явилась разработка так называемого фосфотриэфирного метода . Образующийся динуклеотид после частичного деблокирования фосфата конденсируют аналогичным образом с другими динуклеотидом и т.д. Применение этого способа, в котором используют защиту фосфатной группы, позволило значительно сократить время синтеза и повысить выходы олигонуклеотидов.

Параллельно этим методам, которые осуществляют в растворах, разрабатывались твердофазные способы синтеза нуклеиновых кислот. В последнем случае процесс проводят в двухфазной системе; нуклеозидный компонент связан ковалентно с нерастворимым полимером, а нуклеотидный компонент и необходимые реагенты находятся в растворе.

Обычно в этом случае на первой стадии нуклеозид присоединяют с помощью "якорной" группы к нерастворимому полимеру. Затем его 5"-гидроксильную группу деблокируют и конденсируют с нуклеотидным компонентом. У образующегося полностью защищенного динуклеозидмонофосфата деблокируют защитную группу в положении 5" и присоединяют следующему нуклеотид и т.д.

Наиболее распространенные методы твердофазного синтеза олигонуклеотидов основаны на использовании нуклеотидного компонента, содержащего Р( III ). В так называемом амидофосфитном способе нуклеотидным компонентом является эфир 3"-амидофосфита дезоксинуклеозида. Достаточно устойчивые амидофосфиты при протонировании в присутствии тетразола превращаются в сильные фосфорилирующие агенты. После завершения синтеза удаляют защитные группы с межнуклеотидных фосфатов, отделяют олигонуклеотид от носителя, деблокируют группы NH2 гетероциклов. Липофильную группу (МеО)2Тr удаляют после первого хроматографического разделения.

Стандартность операций в твердофазном синтезе олигонуклеотидов явилась основой для автоматизации процесса . Принцип работы автомата-синтезатора основан на подаче в реактор с помощью насоса (под контролем микропроцессора) защищенных нуклеотидных компонентов реагентов и растворителей по заданной программе в колонку, содержащую полимерный носитель с закрепленным на нем первым нуклеозидом. После окончания синтеза и отделения полностью защищенного олигонуклеотида от полимерного носителя проводят деблокирование, очистку и анализ синтезированных фрагментов ДНК. Так, с помощью гидрофосфорильного метода в автомате - синтезаторе за несколько часов получают 30-40-звенные олигонуклеотиды; возможен синтез более чем 100-звенных фрагментов ДНК. Разработаны синтезаторы, позволяющие проводить одновременно синтез несколько олигонуклеотидов.

Синтез олигорибонуклеотидов ферментативным путем осуществляют обычно с использованием рибонуклеаз или полинуклеотидфосфорилаз.

В качестве нуклеотидного и нуклеозидного компонента применяют мономеры или олигонуклеотиды. Эту реакцию используют для синтеза ди-, три- и тетрарибонуклеотидов. При увеличении длины олигорибонуклеотида начинает преобладать обратная реакция (гидролиз олигонуклеотида).

Химический синтез олигорибонуклеотидов проводят в основном с использованием тех же приемов, как и при синтезе ДНК.


4. Химические свойства нуклеиновых кислот

Нуклеиновые кислоты :

Хорошо растворимы в воде

Практически не растворимы в органических растворителях.

Очень чувствительны к действию температуры и критических значений уровня pH.

Из двух типов нуклеиновых кислот - ДНК и РНК - дезоксирибонуклеиновая кислота выполняет роль вещества, в котором закодирована вся основная наследственная информация клетки, и которое способно к самовоспроизведению, а рибонуклеиновые кислоты выполняют роль посредников между ДНК и белком. Такие функции нуклеиновых кислот тесно связаны с обенностями их индивидуальной структуры.

ДНК и РНК - это полимерные макромолекулы, мономерами которых служат нуклеотиды . Каждый нуклеотид сформирован из трех частей - моносахарида, остатка фосфорной кислоты и азотистого основания. Азотистое основание соединено с сахаром b-N-гликозидной связью (рис. 1.1).

Сахар, входящий в состав нуклеотида (пентоза), может присутствовать в одной из двух форм: b-D-рибозы и b-D-2-дезоксирибозы. Различие между ними состоит в том, что гидроксил рибозы при 2’-углеродном атоме пентозы замещен в дезоксирибозе на атом водорода. Нуклеотиды, содержащие рибозу, называются рибонуклеотидами и являются мономерами РНК, а нуклеотиды, содержащие дезоксирибозу, носят название дезоксирибонуклеотиды и формируют ДНК.

Азотистые основания являются производными одного из двух соединений - пурина или пиримидина . В нуклеиновых кислотах преобладают два пуриновых основания - аденин (А) и гуанин (G) и три пиримидиновых - цитозин (С), тимин (Т) и урацил (U). В рибонуклеотидах и соответственно в РНК присутствуют основания А, G, С, U, а в дезоксирибонуклеотидах и в ДНК - А, G, С, Т.

Рис. 1.1. Структура нуклеозида и нуклеотида: цифрами обозначено по-

ложение атомов в остатке пентозы

Номенклатура нуклеозидов и нуклеотидов широко используется в биохимии и молекулярной биологии и представлена в табл. 1.1.

Таблица 1.1. Номенклатура нуклеотидов и нуклеозидов

Длинные полинуклеотидные цепочки ДНК и РНК образуются при соединении нуклеотидов между собой с помощью фосфодиэфирных мостиков. Каждый фосфат соединяет гидроксил при 3’-углеродном атоме пентозы одного нуклеотида с ОН-группой при 5’-углеродном атоме пентозы соседнего нуклеотида (рис. 1.2).

При кислотном гидролизе нуклеиновых кислот образуются отдельные компоненты нуклеотидов, а при ферментативном гидролизе с помощью нуклеаз расщепляются определенные связи в составе фосфодиэфирного мостика и при этом обнажаются 3’- и 5’-концы молекулы (рис. 1.2).

Это дает основание считать цепочку нуклеиновой кислоты полярной, и появляется возможность определять направление чтения последовательности нуклеотидов в ней. Следует отметить, что большинство ферментов, участвующих в синтезе и гидролизе нуклеиновых кислот, работают в направлении от 5’- к 3’-концу (5’ → 3’) цепочки нуклеиновой кислоты. Согласно принятому соглашению, последовательность нуклеотидов в цепочках нуклеиновых кислот тоже читается в направлении 5’ → 3’ (рис. 1.2).

Особенности строения ДНК. Согласно трехмерной модели, предложенной Уотсоном и Криком в 1953 г., молекула ДНК состоит из двух полинуклеотидных цепей, которые образуют правую спираль относительно одной и той же оси. Направление цепей в молекуле взаимно противоположное, она имеет почти постоянный диаметр и другие параметры, которые не зависят от нуклеотидного состава, в отличие от белков, у которых последовательность аминокислотных остатков определяет вторичную и третичную структуру молекулы.

Сахарофосфатный остов располагается по периферии спирали, а азотистые основания находятся внутри, и их плоскости перпендикулярны оси спирали. Между основаниями, расположенными друг напротив друга в противоположных цепях, формируются специфические водородные связи: аденин всегда связывается с тимином, а гуанин с цитозином. Причем в АТ-паре основания соединены двумя водородными связями: одна из них образуется между амино- и кетогруппами, а другая - между двумя атомами азота пурина и пиримидина соответственно. В GС-паре имеется три водородные связи: две из них образуются между амино- и кето-группами соответствующих оснований, а третья - между атомом азота пиримидина и водородом (заместителем у атома азота) пурина.

Таким образом, более объемные пурины всегда спариваются с пиримидинами, имеющими меньшие размеры. Это приводит к тому, что расстояния между С1’-атомами дезоксирибозы в двух цепях оказываются одинаковыми для АТ- и GС-пар и равными 1,085 нм. Два указанных типа пар нуклеотидов, АТ и GС, называют комплементарными парами. Образование пар между двумя пуринами, двумя пиримидинами или некомплементарными основаниями (А+С или G+Т) стерически затруднено, поскольку при этом не могут образовываться подходящие водородные связи и, следовательно, нарушается геометрия спирали.

Геометрия двойной спирали такова, что соседние нуклеотиды в цепи находятся друг от друга на расстоянии 0,34 нм. На один виток спирали приходится 10 пар нуклеотидов, и шаг спирали равен 3,4 нм (10 * 0,34 нм). Диаметр двойной спирали равен примерно 2,0 нм. В связи с тем, что сахарофосфатный остов расположен дальше от оси спирали, чем азотистые основания, в двойной спирали имеются желобки -большой и малый (рис. 1.3).

Молекула ДНК способна принимать различные конформации. Обнаружены А-, В- и Z-формы. В-ДНК - это обычная форма, в которой ДНК находится в клетке, в ней плоскости колец оснований перпендикулярны оси двойной спирали. В А-форме ДНК плоскости пар оснований повернуты примерно на 20° от нормали к оси правой двойной спирали. Z-форма ДНК - это левая спираль с 12 парами нуклеотидов на виток. Биологические функции А- и Z- форм ДНК до конца не выяснены.

Стабильность двойной спирали обусловлена водородными связями между комплементарными нуклеотидами в антипараллельных цепях, стэкинг-взаимодействием (межплоскостные вандерваальсовы контакты между атомами и перекрывание p-орбиталей атомов контактирующих оснований), а также гидрофобными взаимодействиями. Последние выражаются в том, что неполярные азотистые основания обращены внутрь спирали и защищены от непосредственного контакта с полярным растворителем, и наоборот, заряженные сахарафосфатные группы обращены наружу и контактируют с растворителем.

Поскольку две цепи ДНК связаны между собой только нековалентными связями, молекула ДНК легко распадается на отдельные цепочки при нагревании или в щелочных растворах (денатурация ). Однако при медленном охлаждении (отжиг ) цепи способны вновь ассоциировать, и между комплементарными основаниями восстанавливаются водородные связи (ренатурация ). Эти свойства ДНК имеют большое значение для методологии генетической инженерии (глава 20).

Размер молекул ДНК выражают в числе пар нуклеотидов, при этом за единицу принимается тысяча пар нуклеотидов (т. п. н.) или 1 килобаза (кб). Молекулярная масса одной т. п. н. В-формы ДНК составляет ~ 6,6*10 5 Да, а ее длина составляет 340 нм. Полный геном Е.coli (~ 4*10 6 п. н.) представлен одной кольцевой молекулой ДНК (нуклеоид) и имеет длину 1,4 мм.

Особенности строения и функции РНК . Молекулы РНК представляют собой полинуклеотиды, состоящие из одной цепи, включающей 70- 10000 нуклеотидов (иногда и больше), представленные следующими типами: мРНК (матричная или информационная), тРНК (транспортная), рРНК (рибосомная) и только в клетках эукариот - гяРНК (гетерогенная ядерная), а также мяРНК (малые ядерные). Перечисленные виды РНК выполняют специфические функции, кроме того, в некоторых вирусных частицах РНК является носителем генетической информации.

Матричная РНК является транскриптом определенного фрагмента смысловой цепи ДНК и синтезируется в ходе транскрипции . мРНК - это программа (матрица), по которой строится полипептидная молекула. Каждые три последовательно расположенных нуклеотида в мРНК выполняют функцию кодона , определяя положение соответствующей аминокислоты в пептиде. Таким образом, мРНК служит посредником между ДНК и белком.

Транспортная РНК также участвует в процессе синтеза белка. Ее функция состоит в доставке аминокислот к месту синтеза и определении положения аминокислоты в пептиде. Для этого в составе тРНК имеется специфический триплет нуклеотидов, носящий название «антикодон», и вся молекула характеризуется уникальным строением. Структурное представление о молекуле тРНК носит название «клеверный лист» (рис. 1.4).

Молекула тРНК - короткая и состоит из 74-90 нуклеотидов. Как и любая цепь нуклеиновой кислоты, она имеет 2 конца: фосфорилированный 5’-конец и 3’-конец, на котором всегда присутствуют 3 нуклеотида -ССА и концевая 3’ОН-группа. К 3’-концу тРНК прикрепляется аминокислота, и он называется акцепторным. В составе тРНК обнаружено несколько необычным образом модифицированных нуклеотидов, не встречающихся в других нуклеиновых кислотах.

Несмотря на то, что молекула тРНК одноцепочечная, в ней присутствуют отдельные дуплексные участки, формирующие т. н. стебли или ветви, где между асимметричными участками цепи образуются Уотсон-Криковские пары (рис. 1.4). Все известные тРНК формируют «клеверный лист» с четырьмя стеблями (акцепторным, D, антикодоновым и Т). Стебли имеют форму правой двойной спирали, известной как А-форма ДНК. Петли тРНК представляют собой одноцепочечные участки. Некоторые тРНК имеют дополнительные петли и/или стебли (например, вариабельная петля дрожжевой фенилаланиновой тРНК).

Узнавание молекулой тРНК соответствующего сайта в мРНК осуществляется с помощью антикодона, расположенного в антикодоновой петле рис. 1.4). При этом образуются водородные связи между основаниями кодона и антикодона, при условии, что формирующие их последовательности комплементарны, а полинуклеотидные цепи антипараллельны (рис. 1.5).

Молекулы разных тРНК отличаются друг от друга последовательностью нуклеотидов, однако их третичная структура очень сходна. Молекула имеет такой характер укладки, что напоминает по форме букву Г. Акцепторный и Т-стебли уложены в пространстве особым образом и образуют одну непрерывную спираль - «перекладину» буквы Г; антикодоновый и D-стебли образуют «ножку». Правильная укладка молекул тРНК в пространстве имеет большое значение для их функционирования.

В количественном отношении в клетке преобладает рибосомная РНК, однако ее разнообразие по сравнению с другими типами РНК -наименьшее: на долю рРНК приходится до 80 % массы клеточных РНК, и она представлена тремя-четырьмя видами. В то же время, масса почти 100 видов тРНК составляет около 15 %, а доля нескольких тысяч различных мРНК - менее 5 % массы клеточной РНК.

В клетках E.coli обнаружено 3 типа рРНК: 5 S, 16 S и 23 S, а в эукариотических клетках функционируют 18 S-, 5,8 S-, 28 S- и 5 S-рРНК. Эти виды рРНК входят в состав рибосом и составляют примерно 65 % их массы. В составе рибосом рРНК плотно упакованы, способны складываться с образованием стеблей со спаренными основаниями, подобными таковым в тРНК. Считается, что рРНК принимают участие в связывании рибосомы с тРНК. Показано, в частности, что 5 S-рРНК взаимодействует с Т-плечом тРНК.

Кроме перечисленных типов РНК, у эукариот в ядрах обнаружены гетерогенные ядерные РНК и малые ядерные РНК. На долю гяРНК приходится менее 2 % от общего количества клеточной РНК. Эти молекулы способны к быстрым превращениям - для большинства из них время полужизни не превышает 10 мин. Одной из немногих выявленных функций гяРНК является ее роль в качестве предшественника мРНК. мяРНК

ассоциированы с рядом белков и формируют так называемые малые ядерные рибонуклеопротеидные частицы (мяРНП), осуществляющие сплайсинг РНК (глава 3).

Нуклеиновые кислоты - это биополимеры, наряду с белками играющие наиважнейшую роль в клетках живых организмов. Нуклеиновые кислоты отвечают за хранение, передачу и реализацию наследственной информации.

Мономерами нуклеиновых кислот являются нуклеотиды , таким образом они сами представляют полинуклеотиды .

Строение нуклеотидов

Каждый нуклеотид, входящий в состав нуклеиновой кислоты, состоит из трех частей:

    пятиуглеродного сахара (пентозы),

    азотистого основания,

    фосфорной кислоты.

Химические связи между частями нуклеотида ковалентные, образующиеся в результате реакций конденсации (т. е. с выделением молекул воды). Конденсация обратна гидролизу.

В нуклеотиде первый атом углерода пентозы связан с азотистым основанием (связь C-N), а пятый - с фосфорной кислотой (фосфоэфирная связь: C-O-P).

Существуют два основных типа нуклеиновых кислот - ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). В составе РНК сахар представлен рибозой, а в ДНК - дезоксирибозой. В обоих случаях в нуклеиновых кислотах встречается циклический вариант пентоз. Дезоксирибоза отличается от рибозы отсутствием атома кислорода при втором атоме углерода.

Наличие дополнительной гидроксильной группы (-OH) у рибозы делает РНК молекулой, легче вступающей в химические реакции.

В составе нуклеотидов нуклеиновых кислот обычно встречаются следующие азотистые основания: аденин (А), гуанин (Г, G), цитозин (Ц, C), тимин (Т), урацил (У, U).


Аденин и гуанин относятся к пуринам, остальные - к пиримидинам. В молекуле пуринов имеется два кольца, а у пиримидинов только одно. Урацил почти не встречается в ДНК, а тимин весьма редок для РНК. То есть для ДНК характерны аденин, гуанин, тимин и цитозин. Для РНК - аденин, гуанин, урацил и цитозин. Тимин схож с урацилом, отличатся от него лишь метилированным (имеющим группу -CH 3) пятым атомом кольца.

Химическое соединение сахара с азотистым основанием называется нуклеозидом . Ниже представлены нуклеозиды, где в качестве сахара выступает рибоза.


Нуклеозид, реагируя с фосфорной кислотой, образует нуклеотид. Ниже представлен нуклеотид, где в качестве сахара выступает дезоксирибоза, а в качестве азотистого основания - аденин.


Именно наличие остатков фосфорной кислоты в молекулах нуклеиновых кислот определяет их кислотные свойства.

Строение нуклеиновых кислот

Нуклеотиды линейно соединяются между собой, образуя длинные молекулы нуклеиновых кислот. Цепочки многих молекул являются самыми длинными существующими полимерами. Длина молекул обычно существенно меньше ДНК, но при этом различна, т. к. зависит от типа РНК.

При образовании полинуклеотида (нуклеиновой кислоты) остаток фосфорной кислоты предыдущего нуклеотида соединяется с 3-м атомом углерода пентозы следующего нуклеотида. Связь образуется такая же как между 5-м атомом углерода сахара и фосфорной кислотой в самом нуклеотиде – ковалентная фосфоэфирная.

Таким образом, остов молекул нуклеиновых кислот составляют пентозы, между которыми образуются фосфодиэфирные мостики (по-сути остатки пентоз и фосфорных кислот чередуются). От остова в сторону отходят азотистые основания. На рисунке ниже представлена часть молекулы рибонуклеиновой кислоты.

Следует отметить, что молекулы ДНК обычно не только длиннее РНК, но и состоят из двух цепей, соединенных между собой водородными связями, возникающими между азотистыми основаниями. Причем данные связи образуются согласно принципу комплементарности, по которому аденин комплементарен тимину, а гуанин - цитозину.

Подобные связи могут возникать и в РНК (но здесь аденин комплементарен урацилу). Однако в РНК водородные связи образуются между нуклеотидами одной цепи, в результате чего молекула нуклеиновой кислоты сворачивается различным образом.

  • Макромолекулярная структура ДНК
  • Выделение дезоксирибонуклеиновых кислот
  • Выделение рибонуклеиновых кислот
  • Природа межнуклеотидных связей
  • Нуклеиновые кислоты, их значение
  • Список литературы
  • 1. Состав нуклеиновых кислот

    Нуклеиновые кислоты представляют собой биополимеры. Их макромолекулы состоят из не однократно повторяющихся звеньев, которые представлены нуклеотидами. И их логично назвали полинуклеотидами. Одной из главных характеристик нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида (структурного звена нуклеиновых кислот) входят три составные части:

    • азотистое основание. Может быть пиримидиновое и пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.
    • остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота.
    • моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

    Нуклеотид по своей сути это фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

    На закате 40-х - начале 50-х годов, когда уже стали появляться такие методы исследования, как хроматография на бумаге и УФ-спектроскопия. Подтверждались многочисленные исследования нуклеотидного состава НК (Чаргафф, А. Н. Белозерский). Данные полученные при исследованиях в конец разрушили отжившие и некомпетентные представления о нуклеиновых кислотах, как о полимерах, содержащих повторяющиеся тетрануклеотидные последовательности - тетрануклеотидная теория строения ПК, господствовавшая в 30-40-е годы. Также дали основания для создания современных представлений не только о первичной структуре ДНК и РНК, но и об их макромолекулярной структуре и функциях.

    Метод определения состава ПК основан на анализе гидролизатов, образующихся при их ферментативном или химическом расщеплении. Обычно используются три способа химического расщепления НК. Кислотный гидролиз в жестких условиях (70%-ная хлорная кислота, 100° С, 1 ч или 100%-ная муравьиная кислота, 175° C, 2 ч), применяемый для анализа как ДНК, так и РНК, приводит к разрыву всех N-гликозидных связей и образованию смеси пуриновых и пиримидиновых оснований. При исследовании РНК могут использоваться как мягкий кислотный гидролиз (1 н. соляная кислота, lOO° C, 1 ч), в результате которого образуются пуриновые основания и пирамидиповые нуклеозид-2"(3")-фосфаты, так и щелочной гидролиз (0,3 н. едкий кали, 37° С, 20 ч), дающий смесь нуклеозид -2" (3") -фосфатов.

    Поскольку в НК число нуклеотидов каждого вида равно числу соответствующих оснований, для установления нуклеотидного состава данной НК достаточно определить количественное соотношение оснований. Для этой цели из гидролизатов с помощью хроматографии на бумаге или электрофореза (когда в результате гидролиза получают нуклеотиды) выделяют индивидуальные соединения. Каждое основание независимо от того, связано оно с углеводным фрагментом или нет, обладает характерным максимумом поглощения в УФ, интенсивность которого зависит от концентрации. По этой причине, исходя из УФ-спектров выделенных соединений, можно определить количественное соотношение оснований, а следовательно, и нуклеотидный состав исходной НК.

    При количественном определении минорных нуклеотидов, особенно таких неустойчивых, как дигидроуридиловая кислота, пользуются ферментативными методами гидролиза (ФДЭ змеиного яда и селезенки).

    Использование описанных выше аналитических приемов показало, что ПК различного происхождения состоят за редким исключением из четырех основных нуклеотидов и что содержание минорных нуклеотидов может меняться в значительных пределах.

    При исследовании нуклеотидного состава нативных ДНК различного происхождения Чаргаффом были обнаружены следующие закономерности.

    1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований. Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый.

    2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как А=Т и G=C. Из этих закономерностей вытекает третья.

    3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового (цитозин и аденин), равно количеству оснований, содержащих оксо-группу в тех же положениях (гуанин и тимин), т. е. A+C=G+T. Эти закономерности получили название правил Чаргаффа. Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что (G+C)/(A+T), как правило, отличается от единицы (может быть как больше, так и меньше ее). По этому признаку различают два основных типа ДНК: А Т-тип с преимущественным содержанием аденина и тимина и G C-тип с преимущественным содержанием гуанина и цитозина.

    Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденина и тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности. Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0,3 до 2,8. При подсчете коэффициента специфичности учитывается содержание минорных Оснований, а также замены основных оснований их производными. Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6% 5-метилцитозина, Последний входит в сумму содержания гуанина (22,7%) и цитозина (16,8%). Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры.

    Первые сведения о нуклеотидном составе РНК относились к препаратам, представляющим собой смеси клеточных РНК (рибосомных, информационных и транспортных) и называемым обычно суммарной фракцией РНК. Правила Чаргаффа в этом случае не соблюдаются, хотя определенное соответствие между содержанием гуанина и цитозина, а также аденина и урацила все же имеет, место.

    Данные, полученные в последние годы при анализе индивидуальных РНК, показывают, что и на них правила Чаргаффа не распространяются. Однако различия в содержании аденина и урацила, а также гуанина и цитозина для большинства РНК невелики и что, следовательно, тенденция к выполнению указанных правил все же наблюдается. Этот факт объясняется особенностями макроструктуры РНК.

    Характерными структурными элементами некоторых РНК являются минорные основания. Соответствующие им нуклеотидные остатки обычно входят в состав транспортных и некоторых других РНК в очень небольших количествах, поэтому определение полного нуклеотидного состава таких РНК представляет собой иногда весьма сложную задачу.

    2. Макромолекулярная структура ДНК

    В 1953 г. Уотсон и Крик, опираясь на известные данные о конформации нуклеозидных остатков, о характере межнуклеотидной связи в ДНК и закономерности нуклеотидного состава ДНК (правила Чаргаффа), расшифровали рентгенограммы паракристаллической формы ДНК [так называемой В-формы, образующейся при влажности выше 80% и при высокой концентрации противоионов (Li+) в образце]. Согласно их модели, молекула ДНК представляет собой правильную спираль, образованную двумя полидезоксирибонуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Диаметр спирали практически постоянен вдоль всей ее длины и равен 1,8 нм (18 А).

    Макромолекулярная структура ДНК.

    (а)-Модель Уотсона - Крика;

    (6)-параметры спиралей В-, С- и Т-форм ДНК (проекции перпендикулярно оси спирали);

    (в)-поперечный разрез спирали ДНК в В-форме (заштрихованные прямоугольники изображают пары оснований);

    (г)-параметры спирали ДНК в А-форме;

    (д)-поперечный разрез спирали ДНК в А-форме.

    Длина витка спирали, который соответствует ее периоду идентичности, составляет 3,37 нм (33,7 А). На один виток спирали приходится 10 остатков оснований в одной цепи. Расстояние между плоскостями оснований равно, таким образом, примерно 0,34 нм (3,4 А). Плоскости остатков оснований перпендикулярны длинной оси спирали. Плоскости углеводных остатков несколько отклоняются от этой оси (первоначально Уотсон и.Крик предположили, что они параллельны ей).

    Из рисунка видно, что углеводофосфатный остов молекулы обращен наружу. Спираль закручена таким образом, что на ее поверхности можно выделить две различные по размерам бороздки (их часто называют также желобками) - большую, шириной примерно 2,2 нм (22 А), и малую -шириной около 1,2 нм (12А). Спираль - правовращающая. Полидезоксирибонуклеотидные цепи в ней антипараллельны: это означает, что если мы будем двигаться вдоль длинной оси спирали от одного ее конца к другому, то в одной цепи мы будем проходить фосфодиэфирные связи в направлении 3"а 5", а в другой - в направлении 5"а 3". Иными словами, на каждом из концов линейной молекулы ДНК расположены 5"-конец одной и 3"-конец другой цепи.

    Регулярность спирали требует, чтобы против остатка пуринового основания в одной цепи находился остаток пиримидинового основания в другой цепи. Как уже подчеркивалось, это требование реализуется в виде принципа образования комплементарных пар оснований, т. е. остаткам аденина и гуанина в одной цепи соответствуют остатки тимина и цитозина в другой цепи (и наоборот).

    Таким образом, последовательность нуклеотидов в одной цепи молекулы ДНК предопределяет нуклеотидную последовательность другой цепи.

    Этот принцип является главным следствием модели Уотсона и Крика, поскольку он в удивительно простых химических терминах объясняет основное функциональное назначение ДНК - быть хранителем генетической информации.

    Заканчивая рассмотрение модели Уотсона и Крика, остается добавить, что соседние пары остатков оснований в ДНК, находящейся в В-форме, повернуты друг относительно друга на 36° (угол между прямыми, соединяющими атомы С 1 " в соседних комплементарных парах).

    3. Выделение дезоксирибонуклеиновых кислот

    Живые клетки, за исключением сперматозоидов, в норме содержат значительно больше рибонуклеиновой, чем дезоксирибонуклеиновой кислоты. На методы выделения дезоксирибонуклеиновых кислот оказало большое влияние то обстоятельство, что, тогда как рибонуклеопротеиды и рибонуклеиновые кислоты растворимы в разбавленном (0,15 М) растворе хлористого натрия, дезоксирибонуклеопротеидные комплексы фактически в нем нерастворимы. Поэтому гомогенизированный орган или организм тщательно промывают разбавленным солевым раствором, из остатка с помощью крепкого солевого раствора экстрагируют дезоксирибонуклеиновую кислоту, которую осаждают затем добавлением этанола. С другой стороны, элюирование того же остатка водой дает раствор, из которого при добавлении соли выпадает дезоксирибонуклеопротеид. Расщепление нуклеопротеида, который в основном представляет собой солеподобный комплекс между полиосновными и поликислотными электролитами, легко достигается растворением в крепком солевом растворе или обработкой тиоцианатом калия. Большую часть белка можно удалить либо добавлением этанола, либо эмульгированием с помощью хлороформа и амилового или октилового спирта (белок образует с хлороформом гель). Широко применялась также обработка детергентами. Позднее дезоксирибонуклеиновые кислоты выделяли с помощью экстракции водными n-аминосалицилат - фенольными растворами. При использовании этого метода были получены препараты дезоксирибонуклеиновой кислоты, из которых одни содержали остаточный белок, тогда как другие были фактически свободны от белка, что указывает на то, что характер связи белок - нуклеиновая кислота различен в различных тканях. Удобная модификация состоит в гомогенизировании животной ткани в 0,15 М растворе фенолфталеиндифосфата с последующим добавлением фенола для осаждения ДНК (свободной от РНК) с хорошим выходом.

    Дезоксирибонуклеиновые кислоты, каким бы способом они не выделялись, представляют собой смеси полимеров различного молекулярного веса, за исключением образцов, полученных из некоторых видов бактериофагов.

    ФРАКЦИОНИРОВАНИЕ

    Ранний метод разделения заключался в фракционной диссоциации гелей дезоксирибонуклеопротеида (например, нуклеогистона) посредством экстракции водными растворами хлористого натрия увеличивающейся молярности. Таким путем препараты дезоксирибонуклеиновой кислоты были разделены на ряд фракций, характеризующихся различным отношением содержания аденина с тимином к сумме гуанина с цитозином, причем более легко выделялись фракции, обогащенные гуанином и цитозином. Сходные результаты были получены при хроматографическом отделении дезоксирибонуклеиновой кислоты от гистона, адсорбированного на кизельгуре, с применением градиентного элюирования растворами хлористого натрия. В улучшенном варианте этого метода очищенные фракции гистона сочетались с n-аминобензилцеллюлозой с образованием диазомостиков от тирозиновых и гистидиновых групп белка. Описано также фракционирование нуклеиновых кислот на метилированном сывороточном альбумине (с кизельгуром в качестве носителя). Скорость элюирования с колонки солевыми растворами увеличивающейся концентрации зависит от молекулярного веса, состава (нуклеиновые кислоты с высоким содержанием гуанина с цитозином элюируются легче) и вторичной структуры (денатурированная ДНК прочнее удерживается колонкой, чем нативная). Таким способом из ДНК морского краба Cancer borealis выделен природный компонент - полидезоксиадениловая-тимидиловая кислота. Фракционирование дезоксирибонуклеиновых кислот проводилось также посредством градиентного элюирования с колонки, наполненной фосфатом кальция.

    4. Выделение рибонуклеиновых кислот

    Методы, используемые для экстракции рибонуклеиновых кислот, частично зависят от природы органа или организма. В одном из ранних методов, использованном Левиным, к густому тесту из дрожжей добавляли щелочь, смесь перемешивали с пикриновой кислотой, фильтровали и нуклеиновую кислоту осаждали из фильтрата добавлением соляной кислоты. Такая довольно жесткая обработка приводила к тому, что полученная нуклеиновая кислота значительно отличалась от “нативной” рибонуклеиновой кислоты. Для выделения рибонуклеиновых кислот, приближающихся по структуре к нуклеиновым кислотам живой клетки, необходимо избегать применения жестких условий (рН, температура) в то же время необходимо, насколько возможно, затормозить ферментативный распад. Широко применялась экстракция рибонуклеопротеидов изотоническим раствором хлористого натрия. Белки от нуклеиновых кислот могут быть отщеплены различными методами, такими, как обработка смесями хлороформа с октиловым спиртом, додецилсульфатом натрия, нитратом стронция или спиртом, а также расщепление белковой фракции трипсином. И снова эффективность каждого метода определяется природой рибонуклеопротеида. Для инактивации ферментов в процессе экстракции полезно применение хлоргидрата гуанидина (денатурирующего агента); для выделения рибонуклеиновых кислот и нативных рибонуклеопротеидов из дрожжей был применен метод, использующий адсорбцию рибонуклеаз на бентоните после предварительной обработки ионами цинка.

    Особые преимущества имеет выделение рибонуклеиновых кислот из гомогенатов тканей млекопитающих, микроорганизмов и вирусов экстракцией фенолом и водой при комнатной температуре, так как при этом белки и дезоксирибонуклеиновые кислоты выпадают в осадок, активность рибонуклеазы подавляется и высокополимерные продукты могут быть получены с хорошими выходами. Прямая экстракция дрожжей водным раствором фенола была применена для препаративного получения транспортных РНК.

    ФРАКЦИОНИРОВАНИЕ

    Помимо ряда вирусных нуклеиновых кислот, большинство выделенных полирибонуклеотидов, бесспорно, представляют собой сложные смеси, содержащие полимеры с различной длиной цепи, нуклеотидной последовательностью и составом оснований (присутствие или отсутствие “минорных” оснований). Существует ряд приемов для частичного фракционирования, однако, пока не разработаны удовлетворительные методы характеристики, трудно определить степень чистоты или гомогенности рибонуклеиновых кислот. В основу оценки чистоты транспортных РНК, этих сравнительно низкомолекулярных полирибонуклеотидов, может быть положена их ферментативная реакция с аминокислотами (через аминоациладенилаты), что, конечно, позволяет оценить и их биохимическую однородность.

    Методы фракционирования включают осаждение нейтральными солями, электрофорез, хроматографию на фосфате кальция и осаждение дигидрострептомицином. Недавно для фракционирования рибонуклеиновых кислот была использована фракционная диссоциация комплексов нуклеиновая кислота - гистон, примененная ранее к дезоксинуклеиновым кислотам. Во всех фракциях отношение 6-амино- к 6-кетонуклеозидам было близко к единице. В некоторой степени фракционирование происходит при экстракции фенолом, возможно как результат дифференциального связывания нуклеиновых кислот с белками. Анионообменные целлюлозы, такие как ЭКТЕОЛА и ДЭАЭ, широко применяются в настоящее время для фракционирования не только рибонуклеиновых кислот, включая специфичные для аминокислот транспортные РНК, но и рибонуклеопротеидов и даже вирусных препаратов. Для элюирования обычно используют растворы нейтральных или близких к нейтральным солеи. Поразительной особенностью метода является способность этих ионообменников к разделению очень широкого спектра веществ, начиная от изомеров мононуклеотидов и олигонуклеотидов с различной длиной цепи или различного состава и кончая полинуклеотидами чрезвычайно высокого молекулярного веса. Опубликовано сообщение о разделении на колонках из ДЭАЭ-декстрана РНК, меченной валином, от немеченой акцепторной РНК. Для фракционирования рибонуклеиновых кислот были также применены модифицированные ионообменные целлюлозы, в которых к целлюлозе с помощью эпихлоргидрина присоединены нуклеозиды (вместо триэтаноламина), особенно аденозин и гуанозин . Подобное использование ЭКТЕОЛА-целлюлозы для фракционирования или выделения информационной РНК, связанной в данный момент с ДНК, основано на способности к специфическому образованию водородных связей: ЭКТЕОЛА связывает денатурированную ДНК данного организма (для элюирования ДНК необходим растворитель чрезвычайно высокой ионной силы), а информационная РНК элюируется растворами понижающейся ионной силы. Посредством хроматографии на трет-аминоалкилированном крахмале транспортная рибонуклеиновая кислота была разделена на фракции на основании повышенного сродства к тирозину и лейцину. Хроматография на оксиапатите дает хорошее разделение рибонуклеиновых кислот, специфичных для валина и фенилаланина.

    В другом методе, имеющем значительную потенциальную ценность, используется поперечно сшитый полидиазостирол, полученный в результате реакции полиаминостирола с азотистой кислотой; метод основан на наблюдениях, что соединения диазония легко реагируют с некоторыми аминокислотами с образованием ковалентно связанных производных. В пределах рН от 7 до 8,5 быстро реагируют только тирозин и гистидин. Препараты транспортных РНК, полностью этерифицированные аминокислотами, встряхивали с нерастворимым полидиазостиролом, который реагировал только с нуклеиновыми кислотами, меченными тирозином и гистидином.

    Дальнейшая очистка достигалась повторной этерификацией тирозином при использовании очищенного тирозин-активнрующего фермента и повторной обработкой полидиазостиролом. С неэтерифицированной специфичной к гистидину рибонуклеиновой кислотой реакции не происходило, и она оставалась в растворе, в то время как специфичная к тирозину нуклеиновая кислота освобождалась, как и прежде, при обработке щелочью в мягких условиях. Обе фракции получены почти чистыми в отношении их аминокислотоакцепторной специфичности. Предварительные наблюдения показали, что специфичная к валину рибонуклеиновая кислота, вполне вероятно, может быть этерифицирована дипептидом тирозилвалином.

    5. Природа межнуклеотидных связей

    Работы по определению способа соединения нуклеотидов в полимерных молекулах НК были успешно завершены в начале 50-х годов сразу после того, как была установлена структура нуклеотидов и изучены некоторые свойства их производных (главным образом эфиров). К этому же времени были разработаны методы выделения и очистки ДНК и РНК, так что исследование природы межмономерных связей проводилось с использованием чистых, хотя и сильно деградированных препаратов НК.

    Первые сведения о типе межмономерной, или, как ее принято называть, межнуклеотидной связи были получены с помощью потенциометрического титрования. Эти сведения свидетельствовали о наличии как в РНК, так и в ДНК только одной гпдроксильной группы у каждой фосфатной группы (рКа~1). На основании этого было сделано заключение, что НК содержит структурную единицу дизамещенной фосфорной кислоты.

    Естественно было предположить, что фосфатные остатки “сшивают” нуклеозиды за счет двух своих гидроксилов, а один остается свободным. Оставалось выяснить, какие части нуклеозидных фрагментов участвуют в образовании связи с фосфатными группами.

    Поскольку НК могут быть дезаминированы действием азотистой кислоты, очевидно, что аминогруппы пиримидиновых и пуриновых оснований не принимают участия в образовании межнуклеотидной связи. Помимо этого потенциометрическое титрование указывало, что и оксо(окси)-группы остатков гуанина и урацила, входящих в состав НК, свободны. На основании этих данных было сделано заключение о том, что межнуклеотидные связи образованы фосфатной группой и гидроксильными группами углеводных остатков (т. е. что они являются фосфодиэфирными), которые, следовательно, и являются ответственными за образование полимерной цепи (НК). Таким образом, то, что принято обычно называть межнуклеотидной связью, представляет собой по существу узел, включающий систему связей:

    (где С - первичный или вторичный атомы углерода остатка углевода). При гидролизе ДНК и РНК в зависимости от условий реакции, образуются нуклеотиды с разным положением фосфатного остатка:

    Если предположить, что в НК все межнуклеотидные связи идентичны, то, очевидно, что они могут включать помимо фосфатного остатка только З"-гидроксильную группу одного нуклеозидного звена и 5"-гидроксильную группу другого нуклеозидного звена (3"-У-связь). В случае же их неравноценности в полимерной цепи ДНК могли бы одновременно существовать три типа связей: 3"-5", 3"-3" и 5"-5". Для РНК за счет участия 2 / -гидpoкcилы I-oй группы число типов связи должно было быть еще больше.

    Установить истинную природу межнуклеотидных связей в нативных ДНК и РНК удалось в результате направленного расщепления биополимеров с помощью химического и ферментативного гидролиза и последующего выделения и идентификации полученных при этом фрагментов.

    Химический гидролиз ДНК как метод деградации полимера с целью установления природы межнуклеотидной связи оказался практически непригодным. ДНК не расщепляется при щелочных значениях рН, что хорошо согласуется с предположением о фосфодиэфирной природе межнуклеотидной связи (устойчивость диалкилфосфатов в щелочной среде обсуждалась в разделе). При обработке кислотой даже в мягких условиях ДНК расщепляется как по фосфодиэфирным, так и по N-гликозидным связям, образованным пуриновыми основаниями. Вследствие этого расщепление полимера протекает неоднозначно, но из продуктов кислотного гидролиза ДНК все же удалось выделить ди-фосфаты пиримидиновых дезоксинуклеозидов, которые оказались идентичными синтетическим 3",5"-дифосфатам дезоксицитидина и дезокситимидина:

    Здесь же важно отметить, что наличие этих соединений в продуктах деградации ДНК указывает на участие обеих гидроксильных групп, по крайней мере пиримидиновых мономерных компонентов, в образовании межнуклеотидной связи.

    Более специфическим оказалось ферментативное расщепление ДНК. При обработке препаратов ДНК фосфодиэстеразой (ФДЭ) змеиного яда полимер практически полностью гидролизуется до дезоксннуклеозид-5"-фосфатов, структура которых была Остановлена сравнением с соответствующими нуклеотидами, полученными встречным синтезом.

    Эти данные свидетельствуют об участии 5"-гидроксильных групп всех четырех дезоксинуклеозидов, входящих в состав ДНК, в образовании межнуклеотидной связи. Аналогично, но до 3"-фосфатов дезоксинуклеозидов расщепляется ДНК в присутствии ФДЭ, выделенной из Микрококков или из селезенки.

    Из данных гидролиза ДНК фосфодиэстеразами различной специфичности становится очевидным, что связь нуклеозидных остатков в ДНК осуществляется фосфатной группой, которая одновременно этерифицирует гидроксильную группу у вторичного атома углерода (положение 3") одного нуклеозидного звена и гидроксильную группу у первичного атома углерода (положение 5") - другого нуклеотидного звена.

    Таким образом, было убедительно доказано, что в ДНК межнуклеотидная связь осуществляется за счет фосфатной группы, а также 3"- и 5"-гидроксильных групп нуклеозидных остатков [(а) и (б) - направления расщепления полинуклеотидной цепи ДНК фосфодиэстеразами соответственно змеиного яда и селезенки или микрококков]:

    Предположение о возможности иного строения полимера с регулярно перемежающимися связями нуклеозидных остатков по типу 3"-3" и 5"-5" было отвергнуто, так как оно не удовлетворяло всем экспериментальным данным. Так, полимер такого типа не должен был бы полностью гидролизоваться (до мономеров) в присутствии ФДЭ змеиного яда, избирательно расщепляющей только алкиловые эфиры нуклеозид-5" –фосфатов. То же можно сказать о ФДЭ селезенки, селективно гидролизирующей алкиловые эфиры нуклеозид-3"-фосфатов.

    Самым неясным и сложным оказался вопрос о природе межнуклеотидной связи в РНК. Уже на начальных стадиях при изучении строения РНК было установлено что, они чрезвычайно неустойчивы при щелочном гидролизе. Основными продуктами щелочного гидролиза РНК являются рибонуклсозид-2"- и рибонуклеозид-З"-фосфаты, образующиеся практически в равных количествах.

    Рибонуклеозид-5"-фосфаты при этом не образуются. Эти данные не укладывались в представления о фосфодиэфирной природе межнуклеотидной связи в РНК и требовали всестороннего изучения. Очень важную роль в таком исследовании, которое выполнили в начале 50-х гг. Тодд с сотрудниками, сыграли синтетические алкиловые эфиры рибонуклеотидов, которые были получены специально, чтобы промоделировать тот или иной тип фосфодиэфирной связи.

    Исследования школы Тодда предоставили данные о механизмах превращения алкиловых эфиров рибонуклеотидов в щелочной среде позволили предположить, что в РНК, так же как и в ДНК, межнуклеотидная связь осуществляется фосфатной группой и 3"- и 5"-гидроксильными группами углеводных остатков. Подобная связь в РНК должна очень легко расщепляться в щелочной среде, так как соседняя 2"-гидроксильная группа должна катализировать этот процесс при рН>10, когда начинается ионизация гидроксильных групп рибозы. Очень важно подчеркнуть, что промежуточными соединениями при щелочном расщеплении должны быть все четыре рибонуклеозид-2",З"-циклофосфата, а конечными - образующиеся при их гидролизе рибонуклеозид-3"-фосфаты и рибонуклеозид-2"-фосфаты (четыре пары изомеров).

    Данные щелочного гидролиза ограничили количество возможных для РНК типов межнуклеотидных связей, но не прояснили вопроса о том, как построен этот полимер.

    Самые точные сведения о типе межнуклеотидной связи в РНК, как и в случае ДНК, были получены с помощью ферментативного гидролиза.

    Гидролиз РНК с использованием ФДЭ змеиного яда, протекающий до рибонуклеозид-5"-фосфатов, подтвердил уже прямым путем предположение об участии 5"-гидроксильных групп в образовании фосфодиэфирной связи между мономерными звеньями.

    В дальнейшем были получены данные, на основе которых можно утверждать, что это действительно так (в результате открытия фосфоролиза РНК в присутствии фермента полинуклеотидфосфорилазы (ПНФаза), приводящего к образованию рибонуклеозид-5"-пирофосфатов):

    Надо было только выяснить природу второй гидроксильной группы, участвующей в образовании межнуклеотидной связи. Частично решить эту задачу помог еще один фермент, который использовался для направленного расщепления РНК, - пиримидиловая рибонуклеаза (РНаза).

    Ранее было показано, что этот фермент расщепляет только алкиловые эфиры пиримидиновых рибонуклеозид-3"-фосфатов до рибонук-леозид-3"-фосфатов (через промежуточный рибонуклеозид-2",З"-циклофосфат). Оказалось, что аналогичным образом этот фермент действует и на РНК. В экспериментах с любыми образцами очищенной РНК было обнаружено, что количество фосфорной кислоты, которая образуется при обработке полимера последовательно пиримидиловой РНазой и фосфомоноэстеразой (ФМЭ), а также количество иодной кислоты, затрачиваемой на последующее окисление, эквивалентно количеству остатков пиримидинов в данном образце РНК. Это говорило в пользу того, что по крайней мере пиримидиновые нуклеотиды в РНК связаны с соседними нуклеотидами только посредством 3"-5"-межнук-леотидной связи. Этот вывод подтверждают данные щелочной обработки ферментативных гидролизатов РНК, полученных после действия на нее РНазы: в щелочной среде миграция фосфатного остатка в рибонуклеозид-З"- и -2"-фосфатах невозможна, и наличие в соответствующих гидролизатах только пиримидиновых рибонуклеозид-З"-фосфатов делает очевидным 3"-5"-тип межнуклеотидной связи для пиримидиновых нуклеотидов.

    6. Нуклеиновые кислоты, их значение

    Значение нуклеиновых кислот очень велико. Некоторые особенности в химическом строения обеспечивают возможность ранения, переноса в цитоплазму и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой клетке. Белки обусловливают большинство свойств и признаков клеток. Понятно поэтому, что стабильность структуры нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток и организма в целом. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность.

    Известно два типа нуклеиновых кислот: ДНК и РНК. ДНК (дезоксирибонуклеиновая кислота) - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Количество таких связей между разными азотистыми основаниями неодинаково и вследствие этого они могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с Т другой цепи, а Г - тремя водородными связями азотистым основанием Ц противоположной полинуклеотидной цепочки. Такая способность к избирательному соединению нуклеотидов называется комплиментарностью. Комплиментарное взаимодействие нуклеотидов приводит к образованию пар нуклеотидов. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар и остаток фосфорной кислоты.

    РНК (рибонуклеиновая кислота), так же как ДНК, представляет собой полимер мономерами которого служат нуклеотиды. Азотистые основания те же самые, что входят в состав ДНК (аденин, гуанин, цетозин); четвертое - урацил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дизоксирибозы другую пентозу - рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

    Известны двух- и одноцепочные молекулы рибонуклеиновой кислоты. Двухцепочные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. выполняют у них функции хромосом. Одноцепочные РНК осуществляют перенос информации о последовательности аминокислот в белках от хромосомы к месту их синтеза и участвуют в процессах синтеза.

    Существует несколько видов одноцепочных РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Основную часть РНК цитоплазмы (80-90%) составляет рибосомальная РНК (рРНК). Она содержится в органоидах клетки, осуществляющих синтез белков, - рибосомах. Размеры молекул рРНК относительно невелики, они содержат от 3 до 5 тысяч нуклеотидов. Другой вид РНК - информационные (иРНК), переносящие от хромосом к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Транспортные РНК (рРНК) включают 76-85 нуклеотидов и выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, “узнают” (по принципу комплиментарности) участок иРНК, соответствующий переносимой аминокислоте, осуществляет аминокислоты на рибосоме.

    7. Список литературы

    1. Н. Грин, У. Стаут, Д. Тейлор – Биология.
    2. З.А. Шабарова и А.А. богданов – Химия нуклеиновых кислот и их полимеров.
    3. А.П. Пехов – Биология и общая гинетика.
    4. 2. А. Микельсон – Химия нуклеозидов и нуклеотидов.
    5. З. Гауптман, Ю. Грефе, Х. Ремане – Органическая химия.