В процессе электролитической диссоциации молекул. Электролитическая диссоциация Электролиты и неэлектролиты

Самопроизвольный частичный или полный распад растворенных электролитов (см.) на ионы называется электролитической диссоциацией. Термин «ионы» введен английским физиком М. Фарадеем (1833). Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887) для объяснения свойств водных растворов электролитов. В дальнейшем она развивалась многими учеными на основе учения о строении атома и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде диссоциируют (распадаются) на ионы - положительно и отрицательно заряженные. («Ион» в переводе с греческого означает «странствующий». В растворе ионы беспорядочно движутся в различных направлениях.)

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные движутся к катоду, отрицательно заряженные- к аноду. Поэтому первые называются катионами, вторые - анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженных электродами.

3. Диссоциация - обратимый процесс. Это означает, что наступает такое состояние равновесия, при котором сколько молекул распадается на ионы (диссоциация), столько их вновь образуется из ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости.

Например:

где КА - молекула электролита, - катион, А - анион.

Учение о химической связи помогает ответить на вопрос, почему электролиты диссоциируют на ионы. Легче всего диссоциируют вещества с ионной связью, так как они уже состоят из ионов (см. Химическая связь). При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. Аналогично диссоциируют и электролиты, молекулы которых образованы по типу ковалентной полярной связи. Диссоциация полярных молекул может быть полной или частичной - всё зависит от степени полярности связей. В обоих случаях (при диссоциации соединений с ионной и полярной связью) образуются гидратированные ионы, т. е. ионы, химически связанные с молекулами воды (см. рис. на с. 295).

Основоположником такого взгляда на электролитическую диссоциацию был почетный академик И. А. Каблуков. В отличие от теории Аррениуса, не учитывавшей взаимодействия растворенного вещества с растворителем, И. А. Каблуков к объяснению электролитической диссоциации применил химическую теорию растворов Д. И. Менделеева. Он показал, что при растворении происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. И. А. Каблуков полагал, что в водном растворе содержатся только гидратированные ионы. В настоящее время это представление общепринято. Итак, гидратация ионов - основная причина диссоциации. В других, неводных растворах электролитов химическая связь между частицами (молекулами, ионами) растворенного вещества и частицами растворителя называется сольватацией.

Гидратированные ионы имеют как постоянное, так и переменное число молекул воды. Гидрат постоянного состава образует ионы водорода , удерживающие одну молекулу это гидратированный протон . В научной литературе его принято изображать формулой и называть ионом гидроксония.

Поскольку электролитическая диссоциация - процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой а). Степень диссоциации - это отношение числа молекул, распавшихся на ионы, п к общему числу растворенных молекул :

Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если а то диссоциация отсутствует, а если или 100%, то электролит полностью распадается на ионы. Различные электролиты имеют различную степень диссоциации. С разбавлением раствора она увеличивается, а при добавлении одноименных ионов (одинаковых с ионами электролита) - уменьшается.

Однако для характеристики способности электролита диссоциировать на ионы степень диссоциации не очень удобная величина, так как она, зависит от концентрации электролита. Более общей характеристикой является константа диссоциации К. Ее легко вывести, применив закон действия масс к равновесию диссоциации электролита :

где КА - равновесная концентрация электролита, и - равновесные концентрации его ионов (см. Равновесие химическое). К от концентрации не зависит. Она зависит от природы электролита, растворителя и температуры.

Для слабых электролитов чем больше К (константа диссоциации), тем сильнее электролит, тем больше ионов в растворе.

Сильные электролиты констант диссоциации не имеют. Формально их можно вычислить, но они не будут постоянными при изменении концентрации.

Многоосновные кислоты диссоциируют по ступеням, а значит, такие кислоты будут иметь несколько констант диссоциации - для каждой ступени свою. Например:

Первая ступень:

Вторая ступень:

Третья ступень:

Всегда , т. е. многоосновная кислота при диссоциации по первой ступени ведет себя как более сильная кислота, чем по второй или третьей.

Ступенчатой диссоциации подвергаются и многокислотные основания. Например:

Кислые и основные соли также диссоциируют ступенчато. Например:

При этом по первой ступени соль полностью распадается на ионы, что обусловлено ионным характером связи между и ; и диссоциация по второй ступени незначительная, так как заряженные частицы (ионы) дальнейшей диссоциации подвергаются как очень слабые электролиты.

С точки зрения теории электролитической диссоциации даются определения и описываются свойства таких классов химических соединений, как кислоты, основания, соли.

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например:

Все общие характерные свойства кислот - кислый вкус, изменение цвета индикаторов, взаимодействие с основаниями, основными оксидами, солями - обусловлены присутствием ионов водорода , точнее .

Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы:

Согласно теории электролитической диссоциации все общие щелочные свойства растворов - мылкость на ощупь, изменение цвета индикаторов, взаимодействие с кислотами, ангидридами кислот, солями - обусловлены присутствием гидроксид-ионов .

Правда, имеются электролиты, при диссоциации которых одновременно образуются и ионы водорода, и гидроксид-ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, в незначительных количествах диссоциирует на ионы и :

Поскольку все реакции в водных растворах электролитов представляют собой взаимодействие ионов, уравнения этих реакций можно составлять в ионной форме.

Значение теории электролитической диссоциации состоит в том, что она объяснила многочисленные явления и процессы, протекающие в водных растворах электролитов. Однако она не объясняет процессов, протекающих в неводных растворах. Так, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы и ), то в жидком аммиаке проявляет свойства кислоты - растворяет металлы с выделением водорода. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте.

Все эти факторы противоречат теории электролитической диссоциации. Их объясняет протолити-ческая теория кислог и оснований.

Сам термин «диссоциация» означает распад молекул на несколько более простых частиц. В химии помимо электролитической диссоциации различают термическую диссоциацию. Это обратимая реакция, происходящая при повышении температуры. Например, термическая диссоциация водяного пара:

карбоната кальция:

молекул иода:

Равновесие термической диссоциации подчиняется закону действия масс.


Распад молекул электролита на ионы под действием полярных молекул растворителя называется электролитической диссоциацией . Вещества, водные растворы или расплавы которых проводят электрический ток, называются электролитами.

К ним относятся вода, кислоты, основания и соли. При растворении в воде молекулы электролитов диссоциируют на положительные ионы – катионы и отрицательные – анионы . Процесс электролитической диссоциации обусловлен взаимодействием веществ с водой или другим растворителем, что приводит к образованию гидратированных ионов.

Так, ион водорода образует ион гидроксония:

Н+ + Н2О « Н3О+.

Для упрощения ион гидроксония записывают без указания молекул воды, то есть Н+.

NaCl + nH2O ® Na+(H2O)x + Cl–(H2O)n-x,

или принята запись: NaCl « Na+ + Cl–.

Диссоциация кислот, оснований, солей

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода. Например,

HNO3 « H+ + NO3–

Многоосновные кислоты диссоциируют ступенчато. Например сероводородная кислота диссоциирует ступенчато:

H2S « H+ + HS– (первая ступень)

HS– « H+ + S2– (вторая ступень)

Диссоциация многоосновных кислот протекает, главным образом, по первой ступени. Это объясняется тем, что энергия, которую нужно затратить для отрыва иона от нейтральной молекулы, минимальна и становится больше при диссоциации по каждой следующей ступени.

Основаниями называются электролиты, диссоциирующие в растворе, которые в качестве анионов образуют только гидроксид-ионы. Например,

NaOH ® Na+ + OH–

Многокислотные основания диссоциируют ступенчато

Mg(OH)2 « MgOH+ + OH– (первая ступень)

MgOH+ « Mg2+ + OH– (вторая ступень)

Ступенчатая диссоциация кислот и оснований объясняет образование кислых и основных солей.

Существуют электролиты, которые диссоциируют одновременно как основные и как кислотные. Они называются амфотерными.

H+ + RO– « ROH « R+ + OH–

Амфотерность объясняется малым различием прочности связей R–H и О–Н.

К амфотерным электролитам относятся вода, гидроксиды цинка, алюминия, хрома (III), олова (II, IV), свинца (II, IV) и др.

Диссоциацию амфотерного гидроксида, например Sn(OH)2, можно выразить уравнением:

2H+ + SnO22– « Sn(OH)2 « Sn2+ + 2OH–

2H2O ¯ основные свойства

2H+ + 2–

кислотные свойства

Солями называют электролиты, которые при диссоциации образуют катионы металлов, или комплексные катионы, и анионы кислотных остатков, или комплексные анионы.

Средние соли, растворимые в воде, диссоциируют практически полностью

Al2(SO4)3 « 2Al3+ + 2SO42–

(NH4)2CO3 « 2NH4+ + CO32–

Кислые соли диссоциируют ступенчато, например:

NaHCO3 « Na+ + HCO3– (первая ступень)

Анионы кислых солей в дальнейшем диссоциируют незначительно:

HCO3– « H+ + CO32– (вторая ступень)

Диссоциацию основной соли можно выразить уравнением

CuOHCl « CuOH+ + Cl– (первая ступень)

CuOH+ « Cu+2 + OH– (вторая ступень)

Катионы основных солей по второй ступени диссоциируют в незначительной степени.

Двойные соли – это электролиты, которые при диссоциации образуют два типа катионов металла. Например

KAl(SO4)2 « K+ + Al3+ + 2SO42–.

Комплексные соли – это электролиты, при диссоциации которых образуются два типа ионов: простой и комплексный. Например:

Na2 « 2Na+ + 2–

Количественной характеристикой электролитической диссоциации является степень диссоциации a , равная отношению числа молекул, распавшихся на ионы (n), к общему числу растворенных молекул (N)

Степень диссоциации выражается в долях единицы или процентах.

По степени диссоциации все электролиты делятся на сильные (a>30%), слабые (a<3%) и средней силы (a - 3-30%).

Сильные электролиты при растворении в воде полностью диссоциируют на ионы. К ним относятся:

HCl, HBr, HJ, HNO3, H2SO4, HClO3, HClO4, HMnO4, H2SeO4

Основания

NaOH, KOH, LiOH, RbOH, CsOH, Ba(OH)2, Ca(OH)2, Sr(OH)2

растворимые в воде (приложение, табл.2)

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам . Ими являются, например, газ азот N 2 , жидкость хлороформ CHCl 3 , твердое вещество сахароза C 12 H 22 O 11 , которые в водном растворе существуют в виде гидратов этих молекул.
известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул МА nH 2 O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + * nH 2 O и анионы А * nH 2 O:
МА * nH 2 O → М + * nH 2 O + А — * nH 2 O
Такие вещества относятся к электролитам.
Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус 1887).
Электролитическая диссоциация ионных кристаллических веществ (М +)(А —) в воде является необратимой реакцией:
(М +)(А —) (т) →(М +)(А —) (р) =(М +) (р) + (А —) (р)
Такие вещества относятся к сильным электролитам , ими являются многие основания и соли, например:

NaOH = Na + + OH — K 2 SO 4 = 2K + + SO 4 —
Ba(OH) 2 = Ba 2+ + 2OH — Na 2 = 2Na + + S 2-
Электролитическая диссоциация вещества МА, состоящих из полярных ковалентных молекул, является обратимой реакцией:
(М-А) (г,ж,т) → (М-А) (р) ↔ М + (р) А — (р)
такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:
а) HNO 2 ↔ H + + NO 2-
б) CH 3 COOH ↔ H + + CH 3 COO —
в) H 2 CO 3 ↔ H + + HCO 3 — (первая ступень)
HCO 3 — ↔ H + + CO 3 2- (вторая ступень)
г) NH 3 * H 2 O ↔ NH 4 + OH —
В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.
Качественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается ɑ 1 , всегда ɑ › 0.
Для сильных электролитов ɑ = 1 по определению (диссоциация таких электролитов полная).
Для слабых электролитов степень диссоциации – отношение малярной концентрации продиссоциировавшего вещества (с д) к общей концентрации вещества в растворе (с):

Степень диссоциации – это доля единицы от 100%. Для слабых электролитов ɑ ˂ С 1 (100%). Для слабых кислот H n A степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:
H 3 PO 4 ↔ H + + H 2 PO 4 — = 23,5%
H 2 PO 4 — ↔ H + + HPO 4 2- = 3*10 -4 %
HPO 4 2- ↔ H + + PO 4 3- = 2*10 -9 %
Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т.е. при разбавлении раствора) при нагревании .
В разбавленных растворах сильных кислот H n A их гидротионы H n -1 A не существуют, например:
H 2 SO 4 = H + + (1 → 1)
= H + + SO 4 -2 (1 → 1)
В итоге: H 2 SO 4(разб.) = 2H + + SO 4 -2
в концентрированных растворах содержание гидроанионов (и даже исходных молекул) становятся заметными:
H 2 SO 4 — (конц.) ↔ H + + HSO 4 — (1 ˂ 1)
HSO 4 — ↔ H + + SO 4 2- (2 ˂ 1 ˂ 1)
(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения 1 и 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.
Кислоты — это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных анионов не образуют:
* буквой обозначают степень протекания любых обратимых реакций, в том числе и степень гидролиза.
H 2 SO 4 = 2H + = SO 4 2- , HF ↔ H + + F —
Распространенные сильные кислоты :
Кислородсодержащие кислоты

Бескислородные кислоты
HCl, HBr, HI, HNCS
В разбавленном водном растворе (условно до 10%-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот H n A в список вошли их гидротионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.
Распространенные слабые кислоты :
Кислородсодержащие кислоты

Бескислородные кислоты
Основание – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:
KOH = K + + OH — , Ca(OH) 2 = Ca 2+ + 2OH —
Диссоциация малорастворимых оснований Mg(OH) 2 , Cu(OH) 2 , Mn(OH) 2 , Fe(OH) 2 и других практического значения не имеет.
К сильным основаниям (щелочам ) относятся NaOH, KOH, Ba(OH) 2 некоторые другие. Самым известным слабым основанием является гидрат аммиака NH 3 H 2 O.
Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме H + , и любые анионы, кроме OH :
Cu(NO 3) 2 = Cu 2+ + 2NO 3 —
Al 2 (SO 4) 3 =2Al 3+ + 3SO 4 2-
Na(CH 3 COO) = Na + + CH 3 COO —
BaCl 2 = Ba 2+ + 2Cl
K 2 S = 2K + + S 2-
Mg(CN) 2 = Mg 2+ + 2CN —
речь идет не только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.
Аналогично диссоциируют двойные соли:
KAl(SO 4) 2 = K + + Al 3+ + 2SO 4 2-
Fe(NH 4) 2 (SO 4) 2 = Fe 2+ + 2NH 4 + 2SO 4 2-
Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:
KHSO 4 = K + + HSO 4 —
KHCr 2 O 7 = K + + HCr 2 O 7 —
KH 2 PO 4 = K + + H 2 PO 4 —
NaHCO 3 = Na + + HCO 3 —
Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:
а) если гидроанион принадлежит сильной кислоте, то он и сам диссоциирует также полностью:
HSO 4 — = H + + HSO 4 2- , HCr 2 O 7 — = H + + Cr 2 O 7 2-
и полное уравнение реакции диссоциации запишется в виде:
KHSO 4 = K + + H + + SO 4 2-
KHCr 2 O 7 = K + + H + Cr 2 O 7 2-
(растворы этих солей обязательно будут кислыми, как и растворы соответствующих кислот);
б) если гидротион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:
H 2 PO 4 — ↔ H + + HPO 4 2- (1)
HCO 3 — ↔ H + CO 3 2- (1)

Либо взаимодействие с водой (называемым обратимым гидролизом):
H 2 PO 4 — + H 2 O ↔ H 3 PO 4 + OH — (2)
HCO 3 — + H 2 O ↔ H 2 CO 3 + OH — (2)
При 1 2 преобладает диссоциация (и раствор будет кислым), а при 1 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO 3 — , H 2 PO 4 — , H 2 AsO 4 — и HSeO 3 , растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между 1 и 2 изучаются только в высшей школе)

Основные соли MgCl(OH), CuCO 3 (OH) 2 и другие в своембольшинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.

Кроме константы диссоциации силу электролита можно определить по значению другого параметра, зависящего от концентрации раствора. Таким параметром является кажущаяся степень диссоциации которая показывает долю молекул распавшихся на ионы.

Степень диссоциации ( ) - это отношение числа распавшихся на ионы молекул (N дис. ) к общему числу молекул растворенного вещества (N общ. ) :

Степень диссоциации выражают в долях единицы или в процентах. Поскольку общее число молекул вещества в растворе пропорционально количеству его вещества и его молярной концентрации, то можно записать:

(7.6.5.)

где n дис. и c дис. - соответственно, количество и молярная концентрация растворенного вещества, подвергшегося электролитической диссоциации.

К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% ( > 0,3). При  < 3% ( < 0,03) электролиты считают слабыми, в других случаях о них говорят как об электролитах средней силы.

Степень диссоциации обычно определяют по данным измерения электропроводности растворов, которая прямо пропорциональна концентрации свободно движущихся ионов. При этом получают не истинные значения , а кажущиеся значения. Они всегда меньше истинных значений , т.к. ионы при движении к электродам сталкиваются и частично уменьшают свою подвижность, особенно при высокой их концентрации в растворе, когда возникает электростатическое притяжение между ионами. Например, истинное значение степени электролитической диссоциации HCl в разбавленном растворе равно 1, в 1 М растворе  = 0,78 (78%) при 18 0 С, однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами .

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H 2 SO 4 , HNO 3 , HClO 4 , галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение - Be(OH) 2 и Mg(OH) 2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%. Диссоциация сильных электролитов - это практически необратимый процесс :

HCl  H + + Cl - или HCl = H + + Cl -

кислоты - это вещества, диссоциирующие в водном растворе с образованием катионов водорода и анионов кислотного остатка, основания - это вещества, диссоциирующие в водном растворе с образованием гидроксид-ионов OH - и катионов металла .

Слабые многоосновные кислоты диссоциируют ступенчато. Каждую ступень характеризуют своим значением константы диссоциации, например:

В связи со ступенчатой диссоциацией многоосновные кислоты способны образовывать кислые соли , NaHSO 4 , NaHCO 3 , K 2 HPO 4 и т.д.

Слабые многокислотные основания диссоциируют ступенчато:

Этим объясняют способность многокислотных оснований образовывать основные соли : CuOHCl, (ZnOH) 2 SO 4 и др.

Электролиты, которые в разбавленном водном растворе диссоциируют частично, называют слабыми. Диссоциация слабых электролитов - обратимый процесс

например:

Степень электролитической диссоциации зависит от:

    природы электролита и растворителя;

    концентрации раствора;

    температуры

и возрастает при увеличении разбавления раствора :

Степень диссоциации возрастает при увеличении температуры раствора. Увеличение кинетической энергии растворенных частиц способствует распаду молекул на ионы, что приводит к возрастанию степени диссоциации при нагревании растворов.

Если в растворе слабой кислоты или слабого основания увеличить концентрацию одноименного иона введением соответствующей соли, то наблюдается резкое изменение степени диссоциации слабого электролита. Рассмотрим, например, как изменится  уксусной кислоты (CH3COOH) при введении в раствор ацетата натрия (введение одноименных ионов CH3COO-).

Согласно принципу Ле Шателье равновесие процесса диссоциации

сместится влево в результате увеличения концентрации ацетат-ионов CH 3 COO - , образующихся при диссоциации ацетата натрия:

CH 3 COONa  CH 3 COO - + Na + .

Такое смещение равновесия в сторону образования CH 3 COOH означает уменьшение степени ее диссоциации и приводит к уменьшению концентрации ионов водорода, например:

Таким образом, в результате введения в 1 л 0,01 М раствора CH 3 COOH 0,01 моль CH 3 COONa концентрация ионов водорода уменьшилась в

.

С точки зрения теории электролитической диссоциации амфотерные гидроксиды (амфолиты) - это вещества, диссоциирующие в водном растворе как по типу кислот, так и по типу оснований . К ним относят Be(OH) 2 , Zn(OH) 2 , Pb(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 , и др. Например, уравнения электролитической диссоциации Be(OH) 2:

1) диссоциация по типу основания:

Be(OH) 2 + 3H 2 O  OH - +

H 2 O  OH - +

2) диссоциация по типу кислоты:

Be(OH) 2 + 2H 2 O  H + +

 H + +

Между константой и степенью диссоциации существует определенная закономерность, которую в 1888г.обнаружил В.Оствальд и сумел ее объяснить. Эта закономерность впоследствии была названа законом разведения Оствальда.

Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

K д связана спростой зависимостью. Если общую молярную концентрацию электролита в растворе обозначить С КА, то для бинарных электролитов концентрации ионов K y+ и A x- будут равны·C KA . Очевидно, что

= = ·C KA ,

C KA - ·C KA = C KA· (1-), тогда

(7.6.6.)

Для слабых электролитов   0 и (1 - )  1. Следовательно,

(7.6.7.)

Полученная зависимость является математическим выражением закона разбавления Оствальда :

степень диссоциации слабого электролита увеличивается при разбавлении раствора обратно пропорционально корню квадратному из его молярной концентрации .

зависимости от механизма прохождения тока через проводники различают проводники первого и второго рода. К проводникам 1-го рода, обладающим электронной проводимостью, относят металлы, оксиды, сульфиды, уголь. Проводники 2-го рода - это вещества, распадающиеся при определенных условиях на ионы: они обладают ионной проводимостью. Вещества, растворы или расплавы которых проводят электрический ток, называются электролитами. Вещества, растворы или расплавы которых не проводят электрического тока, называются неэлектролитами; К электролитам относят кислоты, основания и почти все соли, к неэлектролитам - большинство органических соединений. В растворе или расплаве электролиты распадаются на ионы. Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией. Диссоциация в растворах протекает под действием полярных молекул растворителя. В расплавах диссоциация протекает вследствие нагревания вещества. Теория электролитической диссоциации была разработана знаменитым шведским химиком С. Аррениусом (1887 г.). Основные положения современной теории электролитической диссоциации: |Т] При растворении в воде электролиты распадаются (диссоциируют) на положительные и отрицательные частицы (ионы), которые находятся в растворе в хаотическом движении. 1 К°> " Для второй ступени диссоциации HS" <± Н+ + S2" значение константы диссоциации KD равно: n2s К D Для полной диссоциации H9S 7=* 2Н+ + S2" н,s значение константы диссоциации KDr равно произведению констант диссоциации по первой и второй ступени: KH2S V^i® . V D Dl Da . При прочих равных условиях KDj > >... KD . » тогда как отрыв протона от нейтральной молекулы всегда протекает легче, чем от отрицательно заряженных ионов. Важным процессом диссоциации является диссоциация воды: Н20 т± Н+ + ОН". Константа для этого процесса при 25 °С равна: н3о [Н*][ОН~] К° " [Н20] " Поскольку концентрация недиссоциированных молекул воды может быть принята равной общему числу моль воды в 1 л, т. е. [Н20] = 1000/18 - 55,56 моль, то [Н+] [ОН"] -= 10~14. Отсюда и произведение концентрации ионов Н+ и ОН" при данной температуре постоянно. Это произведение называют ионным произведением воды (Kj^q) Поскольку в воде концентрация гидратированных ионов водорода и гидроксид ионов равны, то [Н+] = [ОН"] -= 10~7 моль/л. Раствор с равными концентрациями ионов называют нейтральным; раствор, в котором [Н+] > [ОН~] - кислым; раствор, в котором [Н+] < [ОН"] - щелочным (основным). На практике использование концентрации ионов водорода для характеристики кислотности среды неудобно. Обычно для этой цели применяют величину отрицательного десятичного логарифма концентрации водородных ионов, которую называют водородным показателем рН («пэ аш»): pH--lg. Тогда для нейтральной среды рН = -lglO"7 = 7, для кислых растворов рН < 7, для щелочных рН > 7. Пример 1 Определите концентрации ионов водорода и гидроксид ионов в 5 10~4 М растворе соляной кислоты. Дано: См(НС1) « 5 10"4 М Найти: [Н+]; [ОН"] Решение: Так как НС1 - сильный электролит, то [Н+] будет равной молярной концентрации кислоты, т. е. Сн+ = 5 10~4 моль/л, Ю"14 10"14 = WT ~ 5 > Ю-4 " 2 "10 М0ЛЬ/Л-Ответ: [Н+] = 5 10~4 моль/л; [ОН"] = 2 10"п моль/л. Пример 2 Определите рН 0,01 М раствора КОН. Дано: Найти: рН(р-ра) Решение: КОН - сильный электролит, и поэтому [ОН~] будет равна концентрации щелочи, т. е. [ОН"]= 10"2 моль/л. 1(Г14 КГ1 моль/л" рН - -lg = -lglO"12 = 12. Ответ: рН = 12.